Towards VLSI spiking neuron assemblies as general-purpose processors

For the last two decades, the field of Neuromorphic Engineering has attempted to emulate the principles observed in neural systems in Very Large Scale Integration (VLSI) technology. One endeavor of Neuromorphic Engineering is to mimic biological neural information processing systems by implementing electronic analogs of spiking neurons as computational primitives. Neuromorphic Engineering plays an important role in testing and validating hypotheses from the neuroscience community while developing novel computational architectures for solving practical problems in real-time. Although Neuromorphic Engineering is clearly progressing from a technical point of view, practical applications are hindered by two unsolved problems: 1) the technical difficulty of configuring the parameters of the silicon neurons to match a given theoretical model and 2) the lack of general-purpose computational models that can be mapped onto spiking neural networks. This thesis provides solutions to these two problems using a special neural circuit inspired by the cortex: the Soft Winner–Take–All (sWTA). Similar to how transistors and logic gates have become the elementary computational units of general-purpose digital processors, neuromorphic spiking multi-neuron chips implementing sWTA have been proposed as the elementary units which could be composed into a general-purpose neuromorphic processor. The goal of this thesis is to define the first configuration language which can map a high-level computational model onto VLSI neuromorphic spiking neurons, starting from their low-level parameters, and thus raise the possibility of using multi-neuron neuromorphic chips as general-purpose processors. To achieve this goal, I first deal with the technical difficulty of configuring the parameters of the silicon neurons. In particular, I describe a model-based parameter translation technique for systematically mapping the parameters of theoretical models of spiking neurons onto the bias voltages and currents used to configure the multi-neuron chips. In addition, using Dynamic Parameter Estimation (DPE), a novel technique that utilizes synchronization as a tool for dynamically coupling experimentally measured data to its corresponding model, I can use transients in neural activity to efficiently estimate all the parameters of spiking neural networks. These two techniques allow me to systematically measure and set the key properties of a VLSI sWTA network. However, configuring the properties of the individual VLSI sWTA network in a multi-sWTA system is not sufficient to guarantee global stability. For determining boundary conditions for which large neural systems are guaranteed to remain stable, I combine the use of contraction theory with the Linear Threshold Unit (LTU) formalism for modeling spiking neurons. In contraction theory, these boundary conditions can be expressed solely in terms of the key properties

[1]  Luis A. Plana,et al.  SpiNNaker: Mapping neural networks onto a massively-parallel chip multiprocessor , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[2]  Mark Kostuk,et al.  Dynamical State and Parameter Estimation , 2009, SIAM J. Appl. Dyn. Syst..

[3]  Daniel Brüderle,et al.  Neuroscientific modeling with a mixed signal VLSI hardware system , 2009 .

[4]  Xiao-Jing Wang,et al.  A Model of Visuospatial Working Memory in Prefrontal Cortex: Recurrent Network and Cellular Bistability , 1998, Journal of Computational Neuroscience.

[5]  Alain J. Martin,et al.  Asynchronous Techniques for System-on-Chip Design , 2006, Proceedings of the IEEE.

[6]  Wulfram Gerstner,et al.  Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. , 2004, Journal of neurophysiology.

[7]  Alejandro Linares-Barranco,et al.  AER tools for communications and debugging , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[8]  A. Pouget,et al.  Efficient computation and cue integration with noisy population codes , 2001, Nature Neuroscience.

[9]  A. Holden Competition and cooperation in neural nets , 1983 .

[10]  E. Rolls,et al.  Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons. , 2005, Journal of neurophysiology.

[11]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[12]  Bertram E. Shi,et al.  Neuromorphic implementation of orientation hypercolumns , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Yi Dong,et al.  Optimization Methods for Spiking Neurons and Networks , 2010, IEEE Transactions on Neural Networks.

[14]  Rodney J. Douglas,et al.  An Improved Silicon Neuron , 2000 .

[15]  Giacomo Indiveri,et al.  An event-based VLSI network of integrate-and-fire neurons , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[16]  Susan H. Rodger,et al.  JFLAP: An Interactive Formal Languages and Automata Package , 2006 .

[17]  Jerome A. Feldman,et al.  Connectionist Models and Their Properties , 1982, Cogn. Sci..

[18]  Mikel L. Forcada,et al.  Stable Encoding of Finite-State Machines in Discrete-Time Recurrent Neural Nets with Sigmoid Units , 2000, Neural Computation.

[19]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[20]  John Wawrzynek,et al.  Silicon Auditory Processors as Computer Peripherals , 1992, NIPS.

[21]  Jean-Jacques E. Slotine,et al.  Modular stability tools for distributed computation and control , 2003 .

[22]  Rodney J. Douglas,et al.  A pulse-coded communications infrastructure for neuromorphic systems , 1999 .

[23]  Samuel Williams,et al.  The Landscape of Parallel Computing Research: A View from Berkeley , 2006 .

[24]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[25]  John Lazzaro,et al.  Winner-Take-All Networks of O(N) Complexity , 1988, NIPS.

[26]  Piotr Dudek,et al.  Compact silicon neuron circuit with spiking and bursting behaviour , 2008, Neural Networks.

[27]  S. Grossberg Contour Enhancement , Short Term Memory , and Constancies in Reverberating Neural Networks , 1973 .

[28]  Gert Cauwenberghs,et al.  Dynamically Reconfigurable Silicon Array of Spiking Neurons With Conductance-Based Synapses , 2007, IEEE Transactions on Neural Networks.

[29]  Karl J. Friston,et al.  Dynamic causal models of neural system dynamics: current state and future extensions , 2007, Journal of Biosciences.

[30]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[31]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[32]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  Nicolas Brunel,et al.  Can Attractor Network Models Account for the Statistics of Firing During Persistent Activity in Prefrontal Cortex? , 2008, Front. Neurosci..

[34]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[35]  Johannes Schemmel,et al.  A wafer-scale neuromorphic hardware system for large-scale neural modeling , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[36]  Wolfgang Maass,et al.  On the Computational Power of Winner-Take-All , 2000, Neural Computation.

[37]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[38]  Wolfgang Maass,et al.  Lower Bounds for the Computational Power of Networks of Spiking Neurons , 1996, Neural Computation.

[39]  Otto D. Creutzfeldt,et al.  Generality of the functional structure of the neocortex , 1977, Naturwissenschaften.

[40]  Jean,et al.  The Computer and the Brain , 1989, Annals of the History of Computing.

[41]  Mark Kostuk,et al.  Dynamical estimation of neuron and network properties I: variational methods , 2011, Biological Cybernetics.

[42]  Xiao-Jing Wang,et al.  Mean-Driven and Fluctuation-Driven Persistent Activity in Recurrent Networks , 2007, Neural Computation.

[43]  Tobi Delbrück,et al.  CAVIAR: A 45k Neuron, 5M Synapse, 12G Connects/s AER Hardware Sensory–Processing– Learning–Actuating System for High-Speed Visual Object Recognition and Tracking , 2009, IEEE Transactions on Neural Networks.

[44]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[45]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[46]  Misha Tsodyks,et al.  Persistent Activity in Neural Networks with Dynamic Synapses , 2007, PLoS Comput. Biol..

[47]  Giacomo Indiveri,et al.  A PCI based high-fanout AER mapper with 2 GiB RAM look-up table, 0.8 µs latency and 66MHz output event-rate , 2011, 2011 45th Annual Conference on Information Sciences and Systems.

[48]  Chiara Bartolozzi,et al.  Selective attention implemented with dynamic synapses and integrate-and-fire neurons , 2006, Neurocomputing.

[49]  Ueli Rutishauser,et al.  State-Dependent Computation Using Coupled Recurrent Networks , 2008, Neural Computation.

[50]  Liam Paninski,et al.  Efficient estimation of detailed single-neuron models. , 2006, Journal of neurophysiology.

[51]  Maurizio Mattia,et al.  Collective Behavior of Networks with Linear (VLSI) Integrate-and-Fire Neurons , 1999, Neural Computation.

[52]  Paul E. Hasler,et al.  A bio-physically inspired silicon neuron , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[53]  Jianfeng Feng,et al.  Computational neuroscience , 1986, Behavioral and Brain Sciences.

[54]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[55]  Xiao-Jing Wang,et al.  Robust Spatial Working Memory through Homeostatic Synaptic Scaling in Heterogeneous Cortical Networks , 2003, Neuron.

[56]  Shih-Chii Liu,et al.  Analog VLSI: Circuits and Principles , 2002 .

[57]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[58]  Niraj K. Jha,et al.  Switching and Finite Automata Theory , 2010 .

[59]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[60]  M. Wilson,et al.  Analyzing Functional Connectivity Using a Network Likelihood Model of Ensemble Neural Spiking Activity , 2005, Neural Computation.

[61]  Nicolas Tabareau,et al.  How Synchronization Protects from Noise , 2007, 0801.0011.

[62]  R. Reid,et al.  Predicting Every Spike A Model for the Responses of Visual Neurons , 2001, Neuron.

[63]  Wulfram Gerstner,et al.  Quantitative Single-Neuron Modeling: Competition 2009 , 1970 .

[64]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[65]  Henk Nijmeijer,et al.  A dynamical control view on synchronization , 2001 .

[66]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[67]  Sophie Denève,et al.  Bayesian Spiking Neurons I: Inference , 2008, Neural Computation.

[68]  Henry D I Abarbanel,et al.  Parameter and state estimation of experimental chaotic systems using synchronization. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Maurizio Mattia,et al.  Finite-size dynamics of inhibitory and excitatory interacting spiking neurons. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  Andreas G. Andreou,et al.  Characterization of subthreshold MOS mismatch in transistors for VLSI systems , 1994, J. VLSI Signal Process..

[71]  Giacomo Indiveri,et al.  A VLSI spike-driven dynamic synapse which learns only when necessary , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[72]  Tobi Delbrück,et al.  A Multichip Pulse-Based Neuromorphic Infrastructure and Its Application to a Model of Orientation Selectivity , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[73]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[74]  D. Brillinger Maximum likelihood analysis of spike trains of interacting nerve cells , 2004, Biological Cybernetics.

[75]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[76]  Misha Mahowald,et al.  A silicon model of early visual processing , 1993, Neural Networks.

[77]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[78]  G. Schöner,et al.  Dynamic Field Theory of Movement Preparation , 2022 .

[79]  Giacomo Indiveri,et al.  Systematic configuration and automatic tuning of neuromorphic systems , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[80]  P. Gill,et al.  State and parameter estimation in nonlinear systems as an optimal tracking problem , 2008 .

[81]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[82]  Oren Shriki,et al.  Rate Models for Conductance-Based Cortical Neuronal Networks , 2003, Neural Computation.

[83]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..

[84]  Giacomo Indiveri,et al.  A 2D neuromorphic VLSI architecture for modeling selective attention , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[85]  André van Schaik,et al.  AER EAR: A Matched Silicon Cochlea Pair With Address Event Representation Interface , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[86]  Eero P. Simoncelli,et al.  Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Encoding Model , 2004, Neural Computation.

[87]  Maximilian Kreuzer,et al.  Geometry, Topology and Physics I , 2009 .

[88]  Bard Ermentrout,et al.  Reduction of Conductance-Based Models with Slow Synapses to Neural Nets , 1994, Neural Computation.

[89]  Pierre Yger,et al.  PyNN: A Common Interface for Neuronal Network Simulators , 2008, Front. Neuroinform..

[90]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[91]  Ernst Niebur,et al.  A Competitive Network of Spiking VLSI Neurons , 2001 .

[92]  Kwabena Boahen,et al.  Synchrony in Silicon: The Gamma Rhythm , 2007, IEEE Transactions on Neural Networks.

[93]  Giacomo Indiveri,et al.  A Systematic Method for Configuring VLSI Networks of Spiking Neurons , 2011, Neural Computation.

[94]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[95]  Olivier D. Faugeras,et al.  Absolute Stability and Complete Synchronization in a Class of Neural Fields Models , 2008, SIAM J. Appl. Math..

[96]  Gaute T. Einevoll,et al.  Frontiers in Computational Neuroscience , 2022 .

[97]  Mark R. DeYong,et al.  The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element , 1992, IEEE Trans. Neural Networks.

[98]  Wolfgang Maass,et al.  Spiking neurons and the induction of finite state machines , 2002, Theor. Comput. Sci..

[99]  Johannes Schemmel,et al.  Wafer-scale integration of analog neural networks , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[100]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[101]  Giacomo Indiveri,et al.  A low-power adaptive integrate-and-fire neuron circuit , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[102]  Evan Z. Macosko,et al.  A huband-spoke circuit drives pheromone attraction and social behaviour in C . elegans , 2009 .

[103]  Daniel J. Amit,et al.  Quantitative Study of Attractor Neural Network Retrieving at Low Spike Rates: I , 1991 .

[104]  Alan L. Yuille,et al.  A Winner-Take-All Mechanism Based on Presynaptic Inhibition Feedback , 1989, Neural Computation.

[105]  Tobias Delbrück,et al.  Frame-free dynamic digital vision , 2008 .

[106]  Andrew D. Straw,et al.  Vision Egg: an Open-Source Library for Realtime Visual Stimulus Generation , 2008, Frontiers Neuroinformatics.

[107]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[108]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[109]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[110]  Martin Davis,et al.  The Universal Computer: The Road from Leibniz to Turing , 2002 .

[111]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[112]  N. Brunel Persistent activity and the single-cell frequency–current curve in a cortical network model , 2000, Network.

[113]  B. Cragg,et al.  Memory: the analogy with ferromagnetic hysteresis. , 1955, Brain : a journal of neurology.

[114]  Philipp Häfliger Adaptive WTA With an Analog VLSI Neuromorphic Learning Chip , 2007, IEEE Transactions on Neural Networks.

[115]  Michael J. Frank,et al.  Interactions between frontal cortex and basal ganglia in working memory: A computational model , 2001, Cognitive, affective & behavioral neuroscience.

[116]  Rodney J. Douglas,et al.  Feedback interactions between neuronal pointers and maps for attentional processing , 1999, Nature Neuroscience.

[117]  Tobi Delbrück,et al.  Modeling orientation selectivity using a neuromorphic multi-chip system , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[118]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[119]  P. Goldman-Rakic,et al.  Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. , 2003, Journal of neurophysiology.

[120]  Vittorio Dante,et al.  A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory , 2003, IEEE Trans. Neural Networks.

[121]  Bryan Andrew Toth,et al.  Computational Methods for Parameter Estimation in Nonlinear Models , 2011 .

[122]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[123]  Nicolas Brunel,et al.  Dynamics of the Firing Probability of Noisy Integrate-and-Fire Neurons , 2002, Neural Computation.

[124]  Timothy K. Horiuchi,et al.  A neuromorphic head direction cell system , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[125]  R. Douglas,et al.  A silicon neuron , 1991, Nature.

[126]  H. Sebastian Seung,et al.  Permitted and Forbidden Sets in Symmetric Threshold-Linear Networks , 2003, Neural Computation.

[127]  D. Hansel,et al.  Existence and stability of persistent states in large neuronal networks. , 2001, Physical review letters.

[128]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[129]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[130]  Giacomo Indiveri,et al.  Contraction Properties of VLSI Cooperative Competitive Neural Networks of Spiking Neurons , 2007, NIPS.

[131]  T. Delbruck,et al.  A 64x64 aer logarithmic temporal derivative silicon retina , 2005, Research in Microelectronics and Electronics, 2005 PhD.

[132]  Piotr Dudek,et al.  A general-purpose processor-per-pixel analog SIMD vision chip , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[133]  Elisabetta Chicca,et al.  A neuromorphic VLSI system for modeling spike-based cooperative competitive neural networks , 2006 .

[134]  Wulfram Gerstner,et al.  The quantitative single-neuron modeling competition , 2008, Biological Cybernetics.

[135]  W. J. Nowack Methods in Neuronal Modeling , 1991, Neurology.

[136]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[137]  Giacomo Indiveri,et al.  A serial communication infrastructure for multi-chip address event systems , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[138]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[139]  G. L. Masson,et al.  Feedback inhibition controls spike transfer in hybrid thalamic circuits , 2002, Nature.

[140]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[141]  Davide Badoni,et al.  Spike-Driven Synaptic Plasticity: Theory, Simulation, VLSI Implementation , 2000, Neural Computation.

[142]  Steve B. Furber,et al.  Neural Systems Engineering , 2008, Computational Intelligence: A Compendium.

[143]  Johannes Schemmel,et al.  Neuroinformatics Original Research Article Establishing a Novel Modeling Tool: a Python-based Interface for a Neuromorphic Hardware System , 2022 .

[144]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[145]  Michael I. Jordan,et al.  The Handbook of Brain Theory and Neural Networks , 2002 .

[146]  Philipp Häfliger,et al.  A time domain winner-take-all network of integrate-and-fire neurons , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[147]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[148]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[149]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[150]  S. Renaud,et al.  Automated tuning of analog neuromimetic integrated circuits , 2009, 2009 IEEE Biomedical Circuits and Systems Conference.

[151]  R. Jindra Mass action in the nervous system W. J. Freeman, Academic Press, New York (1975), 489 pp., (hard covers). $34.50 , 1976, Neuroscience.

[152]  Carson C. Chow,et al.  Stationary Bumps in Networks of Spiking Neurons , 2001, Neural Computation.

[153]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[154]  James L. McClelland,et al.  Finite State Automata and Simple Recurrent Networks , 1989, Neural Computation.

[155]  Hubert Kaeslin,et al.  Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication , 2008 .

[156]  Daniel Matolin,et al.  A QVGA 143dB dynamic range asynchronous address-event PWM dynamic image sensor with lossless pixel-level video compression , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[157]  Giacomo Indiveri,et al.  Artificial Cognitive Systems: From VLSI Networks of Spiking Neurons to Neuromorphic Cognition , 2009, Cognitive Computation.

[158]  Richard F. Lyon,et al.  An analog electronic cochlea , 1988, IEEE Trans. Acoust. Speech Signal Process..

[159]  Xiao-Jing Wang,et al.  A Recurrent Network Mechanism of Time Integration in Perceptual Decisions , 2006, The Journal of Neuroscience.

[160]  E. Culurciello,et al.  A biomorphic digital image sensor , 2003, IEEE J. Solid State Circuits.

[161]  L F Abbott,et al.  Decoding neuronal firing and modelling neural networks , 1994, Quarterly Reviews of Biophysics.

[162]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[163]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[164]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[165]  Giacomo Indiveri,et al.  A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity , 2006, IEEE Transactions on Neural Networks.

[166]  Gert Cauwenberghs,et al.  Analog VLSI neuromorphic network with programmable membrane channel kinetics , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[167]  Ralph Etienne-Cummings,et al.  Configuring of Spiking Central Pattern Generator Networks for Bipedal Walking Using Genetic Algorthms , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[168]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[169]  Mingqi Deng,et al.  Winner-take-all networks , 1992 .

[170]  Kevan A. C. Martin,et al.  Hybrid analog-digital architectures for neuromorphic systems , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[171]  Richard G. Baraniuk,et al.  Sparse Coding via Thresholding and Local Competition in Neural Circuits , 2008, Neural Computation.

[172]  W. Freeman,et al.  Combining fMRI with EEG and MEG in order to relate patterns of brain activity to cognition. , 2009, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[173]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[174]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[175]  Misha Mahowald,et al.  The Role of Recurrent Excitation in Neocortical Circuits , 1999 .

[176]  Nicolas Brunel,et al.  Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates , 1999, Neural Computation.

[177]  Giacomo Indiveri,et al.  A current-mode conductance-based silicon neuron for address-event neuromorphic systems , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[178]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[179]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[180]  Nicolas Brunel,et al.  Dynamics of a recurrent network of spiking neurons before and following learning , 1997 .

[181]  D. Amit,et al.  Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. , 1997, Cerebral cortex.

[182]  Wolfgang Maass,et al.  Belief Propagation in Networks of Spiking Neurons , 2009, Neural Computation.

[183]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[184]  J. C. Anderson,et al.  Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex. , 1998, Cerebral cortex.

[185]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[186]  P. Goldman-Rakic,et al.  Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. , 2000, Cerebral cortex.

[187]  R. Buxton,et al.  Dynamics of blood flow and oxygenation changes during brain activation: The balloon model , 1998, Magnetic resonance in medicine.

[188]  Kwabena Boahen,et al.  Learning in Silicon: Timing is Everything , 2005, NIPS.

[189]  Cyrille Rossant,et al.  Automatic Fitting of Spiking Neuron Models to Electrophysiological Recordings , 2010, Front. Neuroinform..

[190]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[191]  Yingxue Wang,et al.  Attentional Processing on a Spike-Based VLSI Neural Network , 2006, NIPS.

[192]  Kathie L. Olsen,et al.  Neurotech for Neuroscience: Unifying Concepts, Organizing Principles, and Emerging Tools , 2007, The Journal of Neuroscience.

[193]  Romain Brette,et al.  Neuroinformatics Original Research Article Brian: a Simulator for Spiking Neural Networks in Python , 2022 .

[194]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[195]  Giacomo Indiveri,et al.  Modeling Selective Attention Using a Neuromorphic Analog VLSI Device , 2000, Neural Computation.

[196]  John von Neumann,et al.  First draft of a report on the EDVAC , 1993, IEEE Annals of the History of Computing.

[197]  G. L. Massonc,et al.  Hardware computation of conductance-based neuron models , 2004 .