LGENet: Local and Global Encoder Network for Semantic Segmentation of Airborne Laser Scanning Point Clouds

Interpretation of Airborne Laser Scanning (ALS) point clouds is a critical procedure for producing various geo-information products like 3D city models, digital terrain models and land use maps. In this paper, we present a local and global encoder network (LGENet) for semantic segmentation of ALS point clouds. Adapting the KPConv network, we first extract features by both 2D and 3D point convolutions to allow the network to learn more representative local geometry. Then global encoders are used in the network to exploit contextual information at the object and point level. We design a segment-based Edge Conditioned Convolution to encode the global context between segments. We apply a spatial-channel attention module at the end of the network, which not only captures the global interdependencies between points but also models interactions between channels. We evaluate our method on two ALS datasets namely, the ISPRS benchmark dataset and DCF2019 dataset. For the ISPRS benchmark dataset, our model achieves state-of-the-art results with an overall accuracy of 0.845 and an average F1 score of 0.737. With regards to the DFC2019 dataset, our proposed network achieves an overall accuracy of 0.984 and an average F1 score of 0.834.

[1]  Guillaume Obozinski,et al.  Cut Pursuit: Fast Algorithms to Learn Piecewise Constant Functions , 2016, AISTATS.

[2]  Uwe Soergel,et al.  HIERARCHICAL HIGHER ORDER CRF FOR THE CLASSIFICATION OF AIRBORNE LIDAR POINT CLOUDS IN URBAN AREAS , 2016 .

[3]  Gregory D. Hager,et al.  Semantic Stereo for Incidental Satellite Images , 2018, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[4]  Wei Huang,et al.  A Convolutional Neural Network-Based 3D Semantic Labeling Method for ALS Point Clouds , 2017, Remote. Sens..

[5]  Xiangyun Hu,et al.  Deep-Learning-Based Classification for DTM Extraction from ALS Point Cloud , 2016, Remote. Sens..

[6]  Michael Ying Yang,et al.  Active and incremental learning for semantic ALS point cloud segmentation , 2020, ISPRS Journal of Photogrammetry and Remote Sensing.

[7]  Fuxin Li,et al.  PointConv: Deep Convolutional Networks on 3D Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Yaping Lin,et al.  SEMANTIC BUILDING FAÇADE SEGMENTATION FROM AIRBORNE OBLIQUE IMAGES , 2018 .

[9]  Yifan Xu,et al.  SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters , 2018, ECCV.

[10]  Rohan Bennett,et al.  The land administration domain model , 2015 .

[11]  Cewu Lu,et al.  PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation , 2018, ArXiv.

[12]  Gui-Song Xia,et al.  A geometry-attentional network for ALS point cloud classification , 2020 .

[13]  Alexander Klippel,et al.  Beyond Inventory and Mapping : LIDAR , Landscape and Digital Landscape Architecture , 2018 .

[14]  Ruibin Zhao,et al.  Classifying airborne LiDAR point clouds via deep features learned by a multi-scale convolutional neural network , 2018, Int. J. Geogr. Inf. Sci..

[15]  Xiaojun Yang,et al.  Detect Residential Buildings from Lidar and Aerial Photographs through Object-Oriented Land-Use Classification , 2012 .

[16]  Alexandre Boulch,et al.  FKAConv: Feature-Kernel Alignment for Point Cloud Convolution. , 2020 .

[17]  C. Lin,et al.  Eigen-feature analysis of weighted covariance matrices for LiDAR point cloud classification , 2014 .

[18]  Wang Zhi,et al.  Identification of inclined buildings from aerial LIDAR Data for disaster management , 2010, 2010 18th International Conference on Geoinformatics.

[19]  C. Mallet,et al.  AIRBORNE LIDAR FEATURE SELECTION FOR URBAN CLASSIFICATION USING RANDOM FORESTS , 2009 .

[20]  J. Niemeyer,et al.  Contextual classification of lidar data and building object detection in urban areas , 2014 .

[21]  Bo Yang,et al.  RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Patrick Wieschollek,et al.  Flex-Convolution - Million-Scale Point-Cloud Learning Beyond Grid-Worlds , 2018, ACCV.

[23]  Alexandre Boulch,et al.  SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks , 2017, Comput. Graph..

[24]  Mingtao Feng,et al.  Point Attention Network for Semantic Segmentation of 3D Point Clouds , 2019, Pattern Recognit..

[25]  Silvio Savarese,et al.  3D Semantic Parsing of Large-Scale Indoor Spaces , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Martial Hebert,et al.  3-D scene analysis via sequenced predictions over points and regions , 2011, 2011 IEEE International Conference on Robotics and Automation.

[27]  Matthias Nießner,et al.  ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  George Vosselman,et al.  Airborne and terrestrial laser scanning , 2011, Int. J. Digit. Earth.

[29]  Martin Simonovsky,et al.  Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[30]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[31]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Wei Wu,et al.  PointCNN: Convolution On X-Transformed Points , 2018, NeurIPS.

[33]  Leonidas J. Guibas,et al.  KPConv: Flexible and Deformable Convolution for Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[34]  Bingbo Gao,et al.  State-of-the-Art: DTM Generation Using Airborne LIDAR Data , 2017, Sensors.

[35]  Abhinav Gupta,et al.  Non-local Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[36]  Xiang Li,et al.  Directionally Constrained Fully Convolutional Neural Network For Airborne Lidar Point Cloud Classification , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[37]  Norbert Pfeifer,et al.  Classification of ALS Point Clouds Using End-to-End Deep Learning , 2019, PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science.

[38]  Boris Jutzi,et al.  Semantic 3D scene interpretation: A framework combining optimal neighborhood size selection with relevant features , 2014 .

[39]  Duc Thanh Nguyen,et al.  JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds With Multi-Task Pointwise Networks and Multi-Value Conditional Random Fields , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  S. Schmohl,et al.  SUBMANIFOLD SPARSE CONVOLUTIONAL NETWORKS FOR SEMANTIC SEGMENTATION OF LARGE-SCALE ALS POINT CLOUDS , 2019 .

[41]  Enhua Wu,et al.  Squeeze-and-Excitation Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  David P. Helmbold,et al.  Aerial Lidar Data Classification using AdaBoost , 2007, Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007).

[43]  George Vosselman,et al.  Contextual segment-based classification of airborne laser scanner data , 2017 .

[44]  Vibhav Vineet,et al.  Conditional Random Fields as Recurrent Neural Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[45]  Subhransu Maji,et al.  3D Shape Segmentation with Projective Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Xiaojing Yao,et al.  Airborne LiDAR point cloud classification with global-local graph attention convolution neural network , 2021 .

[47]  S. J. Oude Elberink,et al.  Multiple-entity based classification of airborne laser scanning data in urban areas , 2014 .

[48]  David P. Helmbold,et al.  Aerial LiDAR Data Classification Using Support Vector Machines (SVM) , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[49]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Xiaogang Wang,et al.  Interpolated Convolutional Networks for 3D Point Cloud Understanding , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[51]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Carl Salvaggio,et al.  A Fully Convolutional Network for Semantic Labeling of 3D Point Clouds , 2017, ISPRS Journal of Photogrammetry and Remote Sensing.

[53]  Wanshou Jiang,et al.  Segmentation and Multi-Scale Convolutional Neural Network-Based Classification of Airborne Laser Scanner Data , 2018, Sensors.

[54]  Hasan Asy'ari Arief,et al.  Addressing Overfitting on Pointcloud Classification using Atrous XCRF , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[55]  Charles H. Fletcher,et al.  Assessing vulnerability due to sea-level rise in Maui, Hawai‘i using LiDAR remote sensing and GIS , 2013, Climatic Change.

[56]  Lingjing Wang,et al.  DANCE-NET: Density-aware convolution networks with context encoding for airborne LiDAR point cloud classification , 2020 .

[57]  Nikos Komodakis,et al.  Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[58]  Jun Fu,et al.  Dual Attention Network for Scene Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Boris Jutzi,et al.  Feature relevance assessment for the semantic interpretation of 3D point cloud data , 2013 .

[60]  Silvio Savarese,et al.  SEGCloud: Semantic Segmentation of 3D Point Clouds , 2017, 2017 International Conference on 3D Vision (3DV).

[61]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[62]  Arko Lucieer,et al.  Development of a UAV-LiDAR System with Application to Forest Inventory , 2012, Remote. Sens..

[63]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[64]  Rong Huang,et al.  Deep point embedding for urban classification using ALS point clouds: A new perspective from local to global , 2020 .

[65]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[66]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[67]  Gang Sun,et al.  Squeeze-and-Excitation Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.