Achieving Superelasticity in Additively Manufactured Ni-Lean NiTi by Crystallographic Design

[1]  L. Heller,et al.  Temperature and Microstructure Dependent Tensile Behavior of Coarse Grained Superelastic Niti , 2023, SSRN Electronic Journal.

[2]  A. Popovich,et al.  Controlling microstructure evolution and phase transformation behavior in additive manufacturing of nitinol shape memory alloys by tuning hatch distance , 2022, Journal of Materials Science.

[3]  Byron Alexander Blakey-Milner,et al.  Metal additive manufacturing in aerospace: A review , 2021 .

[4]  Kangjie Chu,et al.  Reducing functional fatigue, transition stress and hysteresis of NiTi micropillars by one-step overstressed plastic deformation , 2021 .

[5]  Yandong Wang,et al.  A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery , 2021 .

[6]  E. Borisov,et al.  Predictive analytical modelling and experimental validation of processing maps in additive manufacturing of nitinol alloys , 2021 .

[7]  L. Mañosa,et al.  Elastocaloric effect with a broad temperature window and low energy loss in a nanograin Ti-44Ni-5Cu-1Al (at·%) shape memory alloy , 2021 .

[8]  P. Hua,et al.  Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance , 2021, Nature Nanotechnology.

[9]  J.C. Guo,et al.  A Comparable Study on Stray Grain Susceptibilities on Different Crystallographic Planes in Single Crystal Superalloys , 2020, Acta Materialia.

[10]  Y. Chumlyakov,et al.  The superelasticity and shape memory effect in Ni-rich Ti-51.5Ni single crystals after one-step and two-step ageing , 2020 .

[11]  Y. Kimura,et al.  Iron-based superelastic alloys with near-constant critical stress temperature dependence , 2020, Science.

[12]  Jian Zhang,et al.  High temperature superelasticity realized in equiatomic Ti-Ni conventional shape memory alloy by severe cold rolling , 2020, Materials & Design.

[13]  M. Elahinia,et al.  Shape memory behavior of NiTiHf alloys fabricated by selective laser melting , 2020 .

[14]  Xiuyan Li,et al.  Improving sustainability with simpler alloys , 2019, Science.

[15]  Jing Feng,et al.  Tailoring the anisotropic mechanical properties of hexagonal M7X3 (M=Fe, Cr, W, Mo; X=C, B) by multialloying , 2019, Acta Materialia.

[16]  Yue Chen,et al.  Shape memory characteristics of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy , 2019, Scripta Materialia.

[17]  Ann Witvrouw,et al.  On the influence of laser defocusing in Selective Laser Melting of 316L , 2018, Additive Manufacturing.

[18]  L. Heller,et al.  On the coupling between martensitic transformation and plasticity in NiTi: Experiments and continuum based modelling , 2018, Progress in Materials Science.

[19]  S. Miyazaki My Experience with Ti–Ni-Based and Ti-Based Shape Memory Alloys , 2017, Shape Memory and Superelasticity.

[20]  G. Kang,et al.  Physical mechanism based crystal plasticity model of NiTi shape memory alloys addressing the thermo-mechanical cyclic degeneration of shape memory effect , 2017 .

[21]  S. Saedi,et al.  High strength NiTiHf shape memory alloys with tailorable properties , 2017 .

[22]  Jack Beuth,et al.  Prediction of lack-of-fusion porosity for powder bed fusion , 2017 .

[23]  Amirhesam Amerinatanzi,et al.  Fabrication of NiTi through additive manufacturing: A review , 2016 .

[24]  M. Elahinia,et al.  The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting , 2016 .

[25]  Ian A. Ashcroft,et al.  Metallurgy of high-silicon steel parts produced using selective laser melting , 2016 .

[26]  Pierre Hirel,et al.  Atomsk: A tool for manipulating and converting atomic data files , 2015, Comput. Phys. Commun..

[27]  M. Elahinia,et al.  Experimental Characterization of Shape Memory Alloys , 2015 .

[28]  H L Wei,et al.  Evolution of solidification texture during additive manufacturing , 2015, Scientific Reports.

[29]  B. Grabowski,et al.  Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition , 2015 .

[30]  Y. Liu The superelastic anisotropy in a NiTi shape memory alloy thin sheet , 2015 .

[31]  D. Dye Shape memory alloys: Towards practical actuators. , 2015, Nature materials.

[32]  Yunzhi Wang,et al.  Superelasticity of slim hysteresis over a wide temperature range by nanodomains of martensite , 2014 .

[33]  Haluk E. Karaca,et al.  Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy , 2013 .

[34]  Toshihiro Omori,et al.  Materials science: Alloys with long memories , 2013, Nature.

[35]  Richard D. James,et al.  Enhanced reversibility and unusual microstructure of a phase-transforming material , 2013, Nature.

[36]  J. Humbeeck Shape memory alloys with high transformation temperatures , 2012 .

[37]  Haluk E. Karaca,et al.  Compressive response of nickel-rich NiTiHf high-temperature shape memory single crystals along the [1 1 1] orientation , 2011 .

[38]  Ze Zhang,et al.  EBSD studies of the stress-induced B2–B19′ martensitic transformation in NiTi tubes under uniaxial tension and compression , 2010 .

[39]  R. Fabbro,et al.  Modelling of gas jet effect on the melt pool movements during deep penetration laser welding , 2008 .

[40]  G. Eggeler,et al.  Influence of Ni on martensitic phase transformations in NiTi shape memory alloys , 2007 .

[41]  M. Wuttig,et al.  Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width , 2006, Nature materials.

[42]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[43]  Xiangyang Huang,et al.  Crystal structures and shape-memory behaviour of NiTi , 2003, Nature materials.

[44]  Rémy Glardon,et al.  Sintering of commercially pure titanium powder with a Nd:YAG laser source , 2003 .

[45]  W. Kurz,et al.  SINGLE-CRYSTAL LASER DEPOSITION OF SUPERALLOYS: PROCESSING-MICROSTRUCTURE MAPS , 2001 .

[46]  Ken Gall,et al.  Compressive response of NiTi single crystals , 2000, Acta Materialia.

[47]  Ken Gall,et al.  Tension–compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi , 1999 .

[48]  Yong Liu,et al.  Criteria for pseudoelasticity in near-equiatomic NiTi shape memory alloys , 1997 .

[49]  Xiaobing Ren,et al.  Origin of rubber-like behaviour in metal alloys , 1997, Nature.

[50]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[51]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[52]  Shuichi Miyazaki,et al.  Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys , 1986 .