Bounds on RF cooperative localization for video capsule endoscopy

Wireless video capsule endoscopy has been in use for over a decade and it uses radio frequency (RF) signals to transmit approximately fifty five thousands clear pictures of inside the GI tract to the body-mounted sensor array. However, physician has no clue on the exact location of the capsule inside the GI tract to associate it with the pictures showing abnormalities such as bleeding or tumors. It is desirable to use the same RF signal for localization of the VCE as it passes through the human GI tract. In this thesis, we address the accuracy limits of RF localization techniques for VCE localization applications. We present an assessment of the accuracy of cooperative localization of VCE using radio frequency (RF) signals with particular emphasis on localization inside the small intestine. We derive the Cramer-Rao Lower Bound (CRLB) for cooperative location estimators using the received signal strength(RSS) or the time of arrival (TOA) of the RF signal. Our derivations are based on a three-dimension human body model, an existing model for RSS propagation from implant organs to body surface and a TOA ranging error model for the effects of non-homogenity of the human body on TOA of the RF signals. Using models for RSS and TOA errors, we first calculate the 3D CRLB bounds for cooperative localization of the VCE in three major digestive organs in the path of GI tract: the stomach, the small intestine and the large intestine. Then we analyze the performance of localization techniques on a typical path inside the small intestine. Our analysis includes the effects of number of external sensors, the external sensor array topology, number of VCE in cooperation and the random variations in transmit power from the capsule.

[1]  Kaveh Pahlavan,et al.  A Testbed for Evaluation of the Effects of Multipath on Performance of TOA-Based Indoor Geolocation , 2013, IEEE Transactions on Instrumentation and Measurement.

[2]  Patrick Robertson,et al.  Development and Evaluation of a Combined WLAN and Inertial Indoor Pedestrian Positioning System , 2009 .

[3]  Kaveh Pahlavan,et al.  Doppler spread analysis of human motions for Body Area Network applications , 2011, 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications.

[4]  Philippe De Doncker,et al.  Ultra-wideband channel model for communication around the human body , 2006, IEEE Journal on Selected Areas in Communications.

[5]  Aleksandar Milenkovic,et al.  Journal of Neuroengineering and Rehabilitation Open Access a Wireless Body Area Network of Intelligent Motion Sensors for Computer Assisted Physical Rehabilitation , 2005 .

[6]  Xinrong Li Super-Resolution TOA Estimation with Diversity Techniques for Indoor Geolocation Applications , 2003 .

[7]  Kaveh Pahlavan,et al.  Algorithm for TOA-based indoor geolocation , 2004 .

[8]  V. Tarokh,et al.  A statistical path loss model for in-home UWB channels , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[9]  Bayan S. Sharif,et al.  Novel MIMO 4-DOF position control for Capsule Endoscope , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[10]  S. Y. Chen,et al.  Kalman Filter for Robot Vision: A Survey , 2012, IEEE Transactions on Industrial Electronics.

[11]  Paolo Dario,et al.  Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures , 2009, Robotica.

[12]  Robert A. Scholtz,et al.  Ranging in a dense multipath environment using an UWB radio link , 2002, IEEE J. Sel. Areas Commun..

[13]  Paul Swain,et al.  Capsule endoscopy in the evaluation of patients with suspected small intestinal bleeding: Results of a pilot study. , 2002, Gastrointestinal endoscopy.

[14]  Max Q.-H. Meng,et al.  A novel radio propagation radiation model for location of the capsule in GI tract , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[15]  Athanasios V. Vasilakos,et al.  Body Area Networks: A Survey , 2010, Mob. Networks Appl..

[16]  K. Arshak,et al.  Adaptive Linearized Methods for Tracking a Moving Telemetry Capsule , 2007, 2007 IEEE International Symposium on Industrial Electronics.

[17]  Ivan Grech,et al.  Body area network for wireless patient monitoring , 2008, IET Commun..

[18]  Eric Walter,et al.  Centralized and Distributed Source Localization by a Network of Sensors Using Guaranteed Set Estimation , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[19]  A. Glukhovsky,et al.  Small intestine/unclassifiedLocalization of the Given M2A® ingestible capsule in the Given® diagnostic imaging system , 2001 .

[20]  Bruce A. MacDonald,et al.  Vision-based localization algorithm based on landmark matching, triangulation, reconstruction, and comparison , 2005, IEEE Transactions on Robotics.

[21]  Yang Hao,et al.  Statistical and deterministic modelling of radio propagation channels in WBAN at 2.45GHz , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[22]  Kaveh Pahlavan,et al.  Wireless information networks, Second Edition , 2005, Wiley series in telecommunications and signal processing.

[23]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[24]  Benton H. Calhoun,et al.  Body Area Sensor Networks: Challenges and Opportunities , 2009, Computer.

[25]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[26]  François Marx,et al.  Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning , 2006, EURASIP J. Adv. Signal Process..

[27]  Kaveh Pahlavan,et al.  Measurement and Modeling of Ultrawideband TOA-Based Ranging in Indoor Multipath Environments , 2009, IEEE Transactions on Vehicular Technology.

[28]  A. Hero,et al.  Signal Strength Localization Bounds in Ad Hoc and Sensor Networks when Transmit Powers are Random , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[29]  Kaveh Pahlavan,et al.  Cooperative Localization Bounds for Indoor Ultra-Wideband Wireless Sensor Networks , 2008, EURASIP J. Adv. Signal Process..

[30]  Jack M. Holtzman,et al.  Wireless information networks , 2010, 2010 International Conference on Wireless Information Networks and Systems (WINSYS).

[31]  Bhaskar Krishnamachari,et al.  Ecolocation: a sequence based technique for RF localization in wireless sensor networks , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[32]  M. Bouet,et al.  RFID tags: Positioning principles and localization techniques , 2008, 2008 1st IFIP Wireless Days.

[33]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[34]  Moe Z. Win,et al.  Fundamental Limits of Wideband Localization— Part I: A General Framework , 2010, IEEE Transactions on Information Theory.

[35]  Dharma P. Agrawal,et al.  GPS: Location-Tracking Technology , 2002, Computer.

[36]  Kaveh Pahlavan,et al.  Modeling of the TOA-based distance measurement error using UWB indoor radio measurements , 2006, IEEE Communications Letters.

[37]  Kaveh Pahlavan,et al.  Bounds on performance of hybrid WiFi-UWB cooperative RF localization for robotic applications , 2010, 2010 IEEE 21st International Symposium on Personal, Indoor and Mobile Radio Communications Workshops.

[38]  Kaveh Pahlavan,et al.  UDP identification and error mitigation in toa-based indoor localization systems using neural network architecture , 2009, IEEE Transactions on Wireless Communications.

[39]  Wheeler Ruml,et al.  Positioning using local maps , 2006, Ad Hoc Networks.

[40]  John A. Stankovic,et al.  Probability grid: a location estimation scheme for wireless sensor networks , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[41]  Kaveh Pahlavan,et al.  Empirical pathloss model for indoor geolocation using UWB measurements , 2007 .

[42]  Kaveh Pahlavan,et al.  Wireless Information Networks: Pahlavan/Wireless Information Networks, Second Edition , 2005 .

[43]  B. Lewis,et al.  Video capsule endoscopy to prospectively assess small bowel injury with celecoxib, naproxen plus omeprazole, and placebo. , 2005, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[44]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[45]  R Cave David,et al.  Wireless Video Capsule Endoscopy , 2002 .

[46]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[47]  M. Yu M2A™ Capsule Endoscopy: A Breakthrough Diagnostic Tool for Small Intestine Imaging , 2002, Gastroenterology nursing : the official journal of the Society of Gastroenterology Nurses and Associates.

[48]  Julien Ryckaert,et al.  Channel model for wireless communication around human body , 2004 .

[49]  Max Q.-H. Meng,et al.  Efficient magnetic localization and orientation technique for capsule endoscopy , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  Y. Hao,et al.  Modeling and Characterization of Biotelemetric Radio Channel From Ingested Implants Considering Organ Contents , 2009, IEEE Transactions on Antennas and Propagation.

[51]  Kaveh Pahlavan,et al.  Accuracy of RSS-Based RF Localization in Multi-capsule Endoscopy , 2012, Int. J. Wirel. Inf. Networks.

[52]  Gill R. Tsouri,et al.  An Investigation Into Relaying of Creeping Waves for Reliable Low-Power Body Sensor Networking , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[53]  Mary Ann Ingram,et al.  Wireless Aspects of Telehealth , 2009, Wirel. Pers. Commun..

[54]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[55]  B. Lewis,et al.  The advent of capsule endoscopy — a not‐so‐futuristic approach to obscure gastrointestinal bleeding , 2003 .

[56]  Jonathan A. Leighton,et al.  A Multi-Center Randomized Comparison of the Endocapsule: Olympus Inc and the Pillcam SB: Given Imaging in Patients with Obscure GI Bleeding , 2007 .

[57]  Kaveh Pahlavan,et al.  Analysis of Time of Arrival Estimation Using Wideband Measurements of Indoor Radio Propagations , 2007, IEEE Transactions on Instrumentation and Measurement.

[58]  Ernst Bonek,et al.  A real-time DOA-based smart antenna processor , 2002, IEEE Trans. Veh. Technol..

[59]  A.A.M. Saleh,et al.  A Statistical Model for Indoor Multipath Propagation , 1987, IEEE J. Sel. Areas Commun..

[60]  Moe Z. Win,et al.  Cooperative Localization in Wireless Networks , 2009, Proceedings of the IEEE.

[61]  Kaveh Pahlavan,et al.  Principles of Wireless Networks: A Unified Approach , 2011 .

[62]  Douglas G. Adler,et al.  Wireless Capsule Endoscopy , 2003 .

[63]  Alfred O. Hero,et al.  Relative location estimation in wireless sensor networks , 2003, IEEE Trans. Signal Process..

[64]  K. Pahlavan Wireless communications for office information networks , 1985, IEEE Communications Magazine.

[65]  Thad B. Welch,et al.  The effects of the human body on UWB signal propagation in an indoor environment , 2002, IEEE J. Sel. Areas Commun..

[66]  D. Fischer,et al.  Capsule endoscopy: the localization system. , 2004, Gastrointestinal endoscopy clinics of North America.

[67]  Risaburo Sato,et al.  Effective permittivity of amorphous mixed materials , 2005 .

[68]  Sinan Gezici,et al.  A Survey on Wireless Position Estimation , 2008, Wirel. Pers. Commun..

[69]  P. Swain,et al.  Wireless capsule endoscopy. , 2002, The Israel Medical Association journal : IMAJ.

[70]  Benoit Denis,et al.  Impact of NLOS propagation upon ranging precision in UWB systems , 2003, IEEE Conference on Ultra Wideband Systems and Technologies, 2003.

[71]  Kaveh Pahlavan,et al.  CN-TOAG: a new algorithm for indoor geolocation , 2004, 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No.04TH8754).

[72]  Moe Z. Win,et al.  Ranging With Ultrawide Bandwidth Signals in Multipath Environments , 2009, Proceedings of the IEEE.

[73]  Judith E. Terrill,et al.  Channel Models for Medical Implant Communication , 2010, Int. J. Wirel. Inf. Networks.

[74]  J. Mcneff The global positioning system , 2002 .

[75]  Vivien Chu,et al.  Ultra Wideband Signals and Systems in Communication Engineering , 2007 .

[76]  Kaveh Pahlavan,et al.  RF Localization for Wireless Video Capsule Endoscopy , 2012, Int. J. Wirel. Inf. Networks.

[77]  Dawn M Sears,et al.  Frequency and clinical outcome of capsule retention during capsule endoscopy for GI bleeding of obscure origin. , 2004, Gastrointestinal endoscopy.

[78]  Juha-Pekka Makela,et al.  Indoor geolocation science and technology , 2002, IEEE Commun. Mag..

[79]  G. Carter,et al.  The generalized correlation method for estimation of time delay , 1976 .

[80]  Hisashi Kobayashi,et al.  On time-of-arrival positioning in a multipath environment , 2004 .

[81]  J. Holtzman,et al.  The non-line of sight problem in mobile location estimation , 1996, Proceedings of ICUPC - 5th International Conference on Universal Personal Communications.

[82]  P. Stoica,et al.  Novel eigenanalysis method for direction estimation , 1990 .

[83]  G.B. Giannakis,et al.  Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks , 2005, IEEE Signal Processing Magazine.

[84]  Hisashi Kobayashi,et al.  On time-of-arrival positioning in a multipath environment , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[85]  T. Ohtsuki,et al.  TOA localization using RSS weight with path loss exponents estimation in NLOS environments , 2008, 2008 14th Asia-Pacific Conference on Communications.

[86]  R. Tharmarasa,et al.  PCRLB-based multisensor array management for multitarget tracking , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[87]  Chao Hu,et al.  3-Axis Magnetic Sensor Array System for Tracking Magnet's Position and Orientation , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[88]  Kaveh Pahlavan,et al.  Performance bounds for RF positioning of endoscopy camera capsules , 2011, 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems.

[89]  H Schwacha,et al.  [Capsule endoscopy]. , 2005, Praxis.

[90]  Kaveh Pahlavan,et al.  On effect of transmit power variance on localization accuracy in wireless capsule endoscopy , 2012, 2012 IEEE Wireless Communications and Networking Conference (WCNC).

[91]  Anders J Johansson Wireless Communication with Medical Implants: Antennas and Propagation , 2004 .

[92]  Simon K Lo,et al.  Capsule endoscopy: practical applications. , 2005, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.