Voronoi diagramsa survey of a fundamental geometric data structure
暂无分享,去创建一个
[1] Kenneth L. Clarkson,et al. Algorithms for diametral pairs and convex hulls that are optimal, randomized, and incremental , 1988, SCG '88.
[2] Glenn K. Manacher,et al. Neither the Greedy Nor the Delaunay Triangulation of a Planar Point Set Approximates the Optimal Triangulation , 1979, Inf. Process. Lett..
[3] Christian Lantuéjoul,et al. Geodesic methods in quantitative image analysis , 1984, Pattern Recognit..
[4] A. L. Loeb. A systematic survey of cubic crystal structures , 1970 .
[5] Leonidas J. Guibas,et al. Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..
[6] Ian K. Crain,et al. The Monte-Carlo generation of random polygons , 1978 .
[7] J. Linhart. Die Beleuchtung Von Kugeln , 1981 .
[8] David P. Dobkin,et al. Delaunay graphs are almost as good as complete graphs , 1990, Discret. Comput. Geom..
[9] A. Tversky,et al. Nearest neighbors and Voronoi regions in certain point processes , 1983, Advances in Applied Probability.
[10] Franz Aurenhammer,et al. A new duality result concerning voronoi diagrams , 1986, ICALP.
[11] Frank Dehne,et al. A computational geometry approach to clustering problems , 1985, SCG '85.
[12] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[13] Peter Forbes Rowat,et al. Representing spatial experience and solving spatial problems in a simulated robot environment , 1979 .
[14] Michael Ian Shamos,et al. Geometric complexity , 1975, STOC.
[15] Ethan D. Bolker,et al. Recognizing Dirichlet tessellations , 1985 .
[16] I. G. Gowda,et al. Dynamic Voronoi diagrams , 1983, IEEE Trans. Inf. Theory.
[17] WERNER NOWACKI. Über allgemeine Eigenschaften von Wirkungsbereichen , 1976 .
[18] Takao Asano,et al. Voronoi Diagram for Points in a Simple Polygon , 1987 .
[19] Bernard Chazelle,et al. An Improved Algorithm for Constructing k th-Order Voronoi Diagrams , 1987, IEEE Trans. Computers.
[20] Micha Sharir,et al. A new efficient motion-planning algorithm for a rod in polygonal space , 1986, SCG '86.
[21] Sabine Stifter,et al. An Axiomatic Approach to Voronoi-Diagrams in 3D , 1991, J. Comput. Syst. Sci..
[22] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .
[23] Franz Aurenhammer,et al. Recognising Polytopical Cell Complexes and Constructing Projection Polyhedra , 1987, J. Symb. Comput..
[24] R. Seidel. A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .
[25] David G. Kirkpatrick,et al. Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..
[26] B. Boots. Weighting Thiessen Polygons , 1980 .
[27] Bernard Chazelle,et al. Computing the Largest Empty Rectangle , 1986, SIAM J. Comput..
[28] Franz Aurenhammer. A relationship between Gale transforms and Voronoi diagrams , 1990, Discret. Appl. Math..
[29] Mark H. Overmars,et al. Dynamization of Order Decomposable Set Problems , 1981, J. Algorithms.
[30] Anita Liu Chow. Parallel algorithms for geometric problems , 1980 .
[31] Robert L. Scot Drysdale,et al. Voronoi diagrams based on convex distance functions , 1985, SCG '85.
[32] D. Mount. Voronoi Diagrams on the Surface of a Polyhedron. , 1985 .
[33] Hans-Christoph Im Hof,et al. Dirichlet regions in manifolds without conjugate points , 1979 .
[34] G. L. Dirichlet. Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .
[35] David Eppstein,et al. Finding the k Smallest Spanning Trees , 1990, BIT.
[36] A. Brøndsted. An Introduction to Convex Polytopes , 1982 .
[37] Michael B. Dillencourt,et al. A Non-Hamiltonian, Nondegenerate Delaunay Triangulation , 1987, Inf. Process. Lett..
[38] Fionn Murtagh,et al. A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..
[39] Micha Sharir,et al. On the shortest paths between two convex polyhedra , 2018, JACM.
[40] David G. Kirkpatrick,et al. A Note on Delaunay and Optimal Triangulations , 1980, Inf. Process. Lett..
[41] Nimrod Megiddo,et al. Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[42] D. T. Lee,et al. Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..
[43] R. Sokal,et al. A New Statistical Approach to Geographic Variation Analysis , 1969 .
[44] H. Blum. Biological shape and visual science (part I) , 1973 .
[45] W. Brostow,et al. Coordination number in liquid argon , 1975 .
[46] Robert E. Tarjan,et al. Finding Minimum Spanning Trees , 1976, SIAM J. Comput..
[47] Carl W David,et al. Voronoi polyhedra as a tool for studying solvation structure , 1982 .
[48] Hiroshi Imai,et al. Minimax geometric fitting of two corresponding sets of points , 1989, SCG '89.
[49] R Gambini. A COMPUTER PROGRAM FOR CALCULATING LINES OF EQUILIBRIUM BETWEEN MULTIPLE CENTERS OF ATTRACTION , 1968 .
[50] Kenneth L. Clarkson. Further applications of random sampling to computational geometry , 1986, STOC '86.
[51] W. Whiteley. Realizability of Polyhedra , 1979 .
[52] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..
[53] Alok Aggarwal,et al. Finding k Points with Minimum Diameter and Related Problems , 1991, J. Algorithms.
[54] D. T. Lee,et al. Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..
[55] Ronald L. Graham,et al. Some NP-complete geometric problems , 1976, STOC '76.
[56] Raimund Seidel,et al. Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.
[57] Robin Sibson,et al. Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..
[58] Samuel Rippa,et al. Minimal roughness property of the Delaunay triangulation , 1990, Comput. Aided Geom. Des..
[59] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[60] B. Boots,et al. Voronoi (Thiessen) polygons , 1987 .
[61] L. Paul Chew,et al. Guaranteed-Quality Triangular Meshes , 1989 .
[62] D. F. Watson. Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..
[63] F. Aurenhammer,et al. On the Peeper's Voronoi diagram , 1991, SIGA.
[64] Richard Cole,et al. Merging Free Trees in Parallel for Efficient Voronoi Diagram Construction (Preliminary Version) , 1990, ICALP.
[65] Andrew Chi-Chih Yao,et al. On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..
[66] Vitit KANTABUTRA,et al. Traveling Salesman Cycles are not Always Subgraphs of Voronoi Duals , 1983, Inf. Process. Lett..
[67] Richard J. Lipton,et al. Multidimensional Searching Problems , 1976, SIAM J. Comput..
[68] Ludwig August Seeber. Recension der "Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber". , 1840 .
[69] Cyril Stanley Smith,et al. The Shape of Things , 2019 .
[70] Kevin Q. Brown,et al. Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..
[71] Bruce W. Weide,et al. Optimal Expected-Time Algorithms for Closest Point Problems , 1980, TOMS.
[72] Branko Grünbaum,et al. Tilings with congruent tiles , 1980 .
[73] D. Matula,et al. Properties of Gabriel Graphs Relevant to Geographic Variation Research and the Clustering of Points in the Plane , 2010 .
[74] Carl Gutwin,et al. The Delauney Triangulation Closely Approximates the Complete Euclidean Graph , 1989, WADS.
[75] Franz Aurenhammer,et al. A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams , 1992, Int. J. Comput. Geom. Appl..
[76] D. T. Lee,et al. On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.
[77] Paul Chew,et al. There is a planar graph almost as good as the complete graph , 1986, SCG '86.
[78] Franz Aurenhammer,et al. An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..
[79] Charles S. Peskin,et al. On the construction of the Voronoi mesh on a sphere , 1985 .
[80] A. H. Thiessen. PRECIPITATION AVERAGES FOR LARGE AREAS , 1911 .
[81] Douglas J. Muder,et al. Putting the best face on a Voronoi polyhedron , 1988 .
[82] Raimund Seidel,et al. On the number of faces in higher-dimensional Voronoi diagrams , 1987, SCG '87.
[83] Narendra Ahuja,et al. DOT PATTERN PROCESSING USING VORONOI POLYGONS AS NEIGHBORHOODS. , 1980 .
[84] R. Seidel. A Method for Proving Lower Bounds for Certain Geometric Problems , 1984 .
[85] Herbert Edelsbrunner,et al. An acyclicity theorem for cell complexes in d dimensions , 1989, SCG '89.
[86] Robert Williams. Space-Filling Polyhedron: Its Relation to Aggregates of Soap Bubbles, Plant Cells, and Metal Crystallites , 1968, Science.
[87] ELKE KOCH,et al. Wirkungsbereichspolyeder und Wirkungsbereichsteilungen zu kubischen Gitterkomplexen mit weniger als drei Freiheitsgraden , 1973 .
[88] E. Gilbert. Random Subdivisions of Space into Crystals , 1962 .
[89] Rex A. Dwyer. Higher-dimensional voronoi diagrams in linear expected time , 1991, Discret. Comput. Geom..
[90] Bernard Chazelle,et al. How to Search in History , 1983, Inf. Control..
[91] Klaus H. Hinrichs,et al. Plane-Sweep Solves the Closest Pair Problem Elegantly , 1988, Inf. Process. Lett..
[92] Otfried Cheong,et al. Euclidean minimum spanning trees and bichromatic closest pairs , 1991, Discret. Comput. Geom..
[93] Denis Mollison,et al. Spatial Contact Models for Ecological and Epidemic Spread , 1977 .
[94] Robin Sibson,et al. Locally Equiangular Triangulations , 1978, Comput. J..
[95] Micha Sharir,et al. Intersection and Closest-Pair Problems for a Set of Planar Discs , 1985, SIAM J. Comput..
[96] J. Goodisman,et al. Voronoi cells: An interesting and potentially useful cell model for interpreting the small‐angle scattering of catalysts , 1983 .
[97] Derick Wood,et al. Voronoi Diagrams Based on General Metrics in the Plane , 1988, STACS.
[98] Chak-Kuen Wong,et al. On Some Distance Problems in Fixed Orientations , 1987, SIAM J. Comput..
[99] Tetsuo Asano,et al. Clustering algorithms based on minimum and maximum spanning trees , 1988, SCG '88.
[100] D. H. McLain,et al. Two Dimensional Interpolation from Random Data , 1976, Comput. J..
[101] Kevin Q. Brown. Geometric transforms for fast geometric algorithms , 1979 .
[102] F. P. Preparata,et al. Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.
[103] Hans Rohnert. Moving Discs Between Polygons , 1988, ICALP.
[104] F. Aurenhammer. Linear combinations from power domains , 1988 .
[105] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[106] David M. Mount. Storing the subdivision of a polyhedral surface , 1987, Discret. Comput. Geom..
[107] Pravin M. Vaidya,et al. Geometry helps in matching , 1989, STOC '88.
[108] Alok Aggarwal,et al. Solving query-retrieval problems by compacting Voronoi diagrams , 1990, STOC '90.
[109] Steven Fortune. A Fast Algorithm for Polygon Containment by Translation (Extended Abstract) , 1985, ICALP.
[110] Takao Asano,et al. A new point-location algorithm and its practical efficiency: comparison with existing algorithms , 1984, TOGS.
[111] Franz Aurenhammer,et al. Improved Algorithms for Discs and Balls Using Power Diagrams , 1988, J. Algorithms.
[112] Hiroshi Imai,et al. Voronoi Diagram in the Laguerre Geometry and its Applications , 1985, SIAM J. Comput..
[113] Douglas J. Muder. How Big is an n-Sided Voronoi Polygon? , 1990 .
[114] John A. Hartigan,et al. Clustering Algorithms , 1975 .
[115] D. T. Lee,et al. Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.
[116] F. Aurenhammer,et al. Geometric relations among Voronoi diagrams , 1987, STACS.
[117] Bruce Randall Donald,et al. Simplified Voronoi diagrams , 1987, SCG '87.
[118] Kurt Mehlhorn,et al. On the construction of abstract voronoi diagrams , 1990, STACS.
[119] David B. Arnold,et al. The Use of Voronoi Tessellations in Processing Soil Survey Results , 1984, IEEE Computer Graphics and Applications.
[120] Leonidas J. Guibas,et al. Parallel computational geometry , 1988, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[121] Kenneth J. Supowit,et al. The Relative Neighborhood Graph, with an Application to Minimum Spanning Trees , 1983, JACM.
[122] A. Lingus,et al. The Greedy and Delaunay Triangulations are Not Bad in the Average Case , 1986, Inf. Process. Lett..
[123] David M. Mount,et al. Globally-Equiangular triangulations of co-circular points in 0(n log n) time , 1988, SCG '88.
[124] J. L Finney,et al. A procedure for the construction of Voronoi polyhedra , 1979 .
[125] Joseph S. B. Mitchell,et al. The Discrete Geodesic Problem , 1987, SIAM J. Comput..
[126] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[127] E. Bolker,et al. Generalized Dirichlet tessellations , 1986 .
[128] D. A. Field,et al. Implementing Watson's algorithm in three dimensions , 1986, SCG '86.
[129] Richard J. Kopec. AN ALTERNATIVE METHOD FOR THE CONSTRUCTION OF THIESSEN POLYGONS , 1963 .
[130] W. A. Johnson. Reaction Kinetics in Processes of Nucleation and Growth , 1939 .
[131] T. Kiang. RANDOM FRAGMENTATION IN TWO AND THREE DIMENSIONS. , 1966 .
[132] Christos H. Papadimitriou,et al. The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..
[133] Chee-Keng Yap,et al. A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.
[134] Bernard Chazelle,et al. Halfspace range search: An algorithmic application ofk-sets , 1986, Discret. Comput. Geom..
[135] Adrian Bowyer,et al. Computing Dirichlet Tessellations , 1981, Comput. J..
[136] D. Weaire,et al. Soap, cells and statistics – random patterns in two dimensions , 1984 .
[137] Michael B. Dillencourt. Toughness and Delaunay triangulations , 1990, Discret. Comput. Geom..
[138] Hartmut Noltemeier,et al. On Separable Clusterings , 1989, J. Algorithms.
[139] Daniel J. Rosenkrantz,et al. An analysis of several heuristics for the traveling salesman problem , 2013, Fundamental Problems in Computing.
[140] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[141] Richard Cole,et al. New Upper Bounds for Neighbor Searching , 1986, Inf. Control..
[142] Leonidas J. Guibas,et al. Points and triangles in the plane and halving planes in space , 1991, Discret. Comput. Geom..
[143] Klara Kedem,et al. Placing the largest similar copy of a convex polygon among polygonal obstacles , 1989, SCG '89.
[144] V. Klee. On the complexity ofd- dimensional Voronoi diagrams , 1979 .
[145] N. J. A. Sloane,et al. Voronoi regions of lattices, second moments of polytopes, and quantization , 1982, IEEE Trans. Inf. Theory.
[146] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[147] Ugo Montanari,et al. A Method for Obtaining Skeletons Using a Quasi-Euclidean Distance , 1968, J. ACM.
[148] Robert L. Scot Drysdale,et al. A practical algorithm for computing the Delaunay triangulation for convex distance functions , 1990, SODA '90.
[149] John Fairfield,et al. Segmenting Dot Patterns by Voronoi Diagram Concavity , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.