Higher brain functions served by the lowly rodent primary visual cortex

It has been more than 50 years since the first description of ocular dominance plasticity--the profound modification of primary visual cortex (V1) following temporary monocular deprivation. This discovery immediately attracted the intense interest of neurobiologists focused on the general question of how experience and deprivation modify the brain as a potential substrate for learning and memory. The pace of discovery has quickened considerably in recent years as mice have become the preferred species to study visual cortical plasticity, and new studies have overturned the dogma that primary sensory cortex is immutable after a developmental critical period. Recent work has shown that, in addition to ocular dominance plasticity, adult visual cortex exhibits several forms of response modification previously considered the exclusive province of higher cortical areas. These "higher brain functions" include neural reports of stimulus familiarity, reward-timing prediction, and spatiotemporal sequence learning. Primary visual cortex can no longer be viewed as a simple visual feature detector with static properties determined during early development. Rodent V1 is a rich and dynamic cortical area in which functions normally associated only with "higher" brain regions can be studied at the mechanistic level.

[1]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  J. R. Newton,et al.  Rewiring Cortex: Functional Plasticity of the Auditory Cortex during Development , 2005 .

[3]  P. Bach-y-Rita,et al.  Sensory substitution and the human–machine interface , 2003, Trends in Cognitive Sciences.

[4]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[5]  Shintaro Funahashi,et al.  Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. II. Activity encoding visual versus motor signal. , 2004, Journal of neurophysiology.

[6]  M P Stryker,et al.  Experience-Dependent Plasticity of Binocular Responses in the Primary Visual Cortex of the Mouse , 1996, The Journal of Neuroscience.

[7]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex , 1997, Neural Computation.

[8]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[9]  Saeed Tavazoie Synaptic State Matching: A Dynamical Architecture for Predictive Internal Representation and Feature Detection , 2013, PloS one.

[10]  M. Hasselmo The role of acetylcholine in learning and memory , 2006, Current Opinion in Neurobiology.

[11]  G. Orban,et al.  Practising orientation identification improves orientation coding in V1 neurons , 2001, Nature.

[12]  M. Shadlen,et al.  Representation of Time by Neurons in the Posterior Parietal Cortex of the Macaque , 2003, Neuron.

[13]  Michael W. Spratling Predictive Coding as a Model of Response Properties in Cortical Area V1 , 2010, The Journal of Neuroscience.

[14]  Konrad Lehmann,et al.  Temporally Coherent Visual Stimuli Boost Ocular Dominance Plasticity , 2013, The Journal of Neuroscience.

[15]  N. Weinberger Specific long-term memory traces in primary auditory cortex , 2004, Nature Reviews Neuroscience.

[16]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[17]  L. Maffei,et al.  Visual perceptual learning induces long-term potentiation in the visual cortex , 2011, Neuroscience.

[18]  Mark F Bear,et al.  Visual Experience Induces Long-Term Potentiation in the Primary Visual Cortex , 2010, The Journal of Neuroscience.

[19]  J. Changeux,et al.  A Neuronal Model of Predictive Coding Accounting for the Mismatch Negativity , 2012, The Journal of Neuroscience.

[20]  M. Bear,et al.  Reward Timing in the Primary Visual Cortex , 2006, Science.

[21]  D. Hubel,et al.  EFFECTS OF VISUAL DEPRIVATION ON MORPHOLOGY AND PHYSIOLOGY OF CELLS IN THE CATS LATERAL GENICULATE BODY. , 1963, Journal of neurophysiology.

[22]  Sean L. Hill,et al.  Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits , 2012, Proceedings of the National Academy of Sciences.

[23]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[24]  James V. Stone Object recognition using spatiotemporal signatures , 1998, Vision Research.

[25]  Michael J. Goard,et al.  Fast Modulation of Visual Perception by Basal Forebrain Cholinergic Neurons , 2013, Nature Neuroscience.

[26]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[27]  Y. Dan,et al.  Activity Recall in Visual Cortical Ensemble , 2012, Nature Neuroscience.

[28]  Tomaso A. Poggio,et al.  A Canonical Neural Circuit for Cortical Nonlinear Operations , 2008, Neural Computation.

[29]  Caspar M. Schwiedrzik,et al.  Stimulus Predictability Reduces Responses in Primary Visual Cortex , 2010, The Journal of Neuroscience.

[30]  D. Hubel,et al.  SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. , 1963, Journal of neurophysiology.

[31]  Pawan Sinha,et al.  Observinga Object Motion Induces Increased Generalization and Sensitivity , 2008, Perception.

[32]  Norman M. Weinberger,et al.  Reconceptualizing the Primary Auditory Cortex: Learning, Memory and Specific Plasticity , 2011 .

[33]  L. Renaud,et al.  Lesions of the Diagonal Band of Broca Enhance Drinking in the Rat , 2003, Journal of neuroendocrinology.

[34]  M. Bear,et al.  A Cholinergic Mechanism for Reward Timing within Primary Visual Cortex , 2013, Neuron.

[35]  Marc'Aurelio Ranzato,et al.  Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[36]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[37]  M. Young,et al.  Spatio‐temporal prediction and inference by V1 neurons , 2007, The European journal of neuroscience.

[38]  R. Buijs,et al.  Light and electron microscopic immunocytochemical analysis of the noradrenaline innervation of the rat visual cortex , 1989, Journal of neurocytology.

[39]  M. Carandini,et al.  Locomotion Controls Spatial Integration in Mouse Visual Cortex , 2013, Current Biology.

[40]  Lars Muckli,et al.  Primary Visual Cortex Activity along the Apparent-Motion Trace Reflects Illusory Perception , 2005, PLoS biology.

[41]  Stockholm,et al.  Behavioral Neuroscience Mini Review Article Learning to Smell Danger: Acquired Associative Representation of Threat in the Olfactory Cortex , 2022 .

[42]  H. Spemann,et al.  Induction of Embryonic Primordia by Implantation of Organizers from a Different Species. , 2024, Cells & development.

[43]  Rufin Vogels,et al.  Mechanisms of Visual Perceptual Learning in Macaque Visual Cortex , 2010, Top. Cogn. Sci..

[44]  Lin Yang,et al.  Perceptual Learning Increases the Strength of the Earliest Signals in Visual Cortex , 2010, The Journal of Neuroscience.

[45]  Yonatan Loewenstein,et al.  Learning reward timing in cortex through reward dependent expression of synaptic plasticity , 2009, Proceedings of the National Academy of Sciences.

[46]  Mazahir T. Hasan,et al.  Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice , 2013, Nature communications.

[47]  Alvaro Pascual-Leone,et al.  Cortical plasticity associated with Braille learning , 1998, Trends in Cognitive Sciences.

[48]  C. Gilbert,et al.  Adult Visual Cortical Plasticity , 2012, Neuron.

[49]  T. Bonhoeffer,et al.  Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex , 2008, Nature Neuroscience.

[50]  M. Carandini,et al.  Normalization as a canonical neural computation , 2013, Nature Reviews Neuroscience.

[51]  J. Kaas,et al.  Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. , 1990, Science.

[52]  M. Bear,et al.  NMDA Receptor-Dependent Ocular Dominance Plasticity in Adult Visual Cortex , 2003, Neuron.

[53]  L. Maffei,et al.  Exogenous supply of nerve growth factor prevents the effects of strabismus in the rat , 1992, Neuroscience.

[54]  Frank Tong,et al.  Perceptual Learning Selectively Refines Orientation Representations in Early Visual Cortex , 2012, The Journal of Neuroscience.

[55]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[56]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[57]  G. Vanni-Mercier,et al.  Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans , 2013, Front. Neurosci..

[58]  D. Purves,et al.  Why we see what we do redux : a wholly empirical theory of vision , 2011 .

[59]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[60]  G. Wallis The role of object motion in forging long-term representations of objects , 2002 .

[61]  Quanxin Wang,et al.  Area map of mouse visual cortex , 2007, The Journal of comparative neurology.

[62]  Christian Wallraven,et al.  The role of characteristic motion in object categorization. , 2004, Journal of vision.

[63]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[64]  V. Mountcastle,et al.  An organizing principle for cerebral function : the unit module and the distributed system , 1978 .

[65]  M. Fahle Perceptual learning: a case for early selection. , 2004, Journal of vision.

[66]  Mark F. Bear,et al.  Learned spatiotemporal sequence recognition and prediction in primary visual cortex , 2014, Nature Neuroscience.

[67]  Kae Nakamura,et al.  Predictive Reward Signal of Dopamine Neurons , 2015 .

[68]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[69]  Steven R. Holloway,et al.  Seeing what is not there shows the costs of perceptual learning. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[71]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[72]  David M. Kaplan,et al.  Topographic organization in the brain: searching for general principles , 2014, Trends in Cognitive Sciences.

[73]  N. Mangini,et al.  Retinotopic organization of striate and extrastriate visual cortex in the mouse , 1980, The Journal of comparative neurology.

[74]  S. Gerber,et al.  Unsupervised Natural Experience Rapidly Alters Invariant Object Representation in Visual Cortex , 2008 .

[75]  Ariel Rokem,et al.  The benefits of cholinergic enhancement during perceptual learning are long-lasting , 2013, Front. Comput. Neurosci..

[76]  L. Maffei,et al.  The visual physiology of the wild type mouse determined with pattern VEPs , 1999, Vision Research.

[77]  José E. Náñez,et al.  Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task , 2002, Nature Neuroscience.

[78]  D. O'Leary,et al.  Potential of visual cortex to develop an array of functional units unique to somatosensory cortex , 1991, Science.

[79]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[80]  Jeffrey P. Gavornik,et al.  Scaling of perceptual errors can predict the shape of neural tuning curves. , 2013, Physical review letters.

[81]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[82]  J. Hawkins,et al.  On Intelligence , 2004 .

[83]  L. Maffei,et al.  Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation , 1994, Vision Research.

[84]  D. Hubel,et al.  The period of susceptibility to the physiological effects of unilateral eye closure in kittens , 1970, The Journal of physiology.

[85]  Aaron C. Koralek,et al.  Volitional modulation of optically recorded calcium signals during neuroprosthetic learning , 2014, Nature Neuroscience.

[86]  John T Serences,et al.  Value-Based Modulations in Human Visual Cortex , 2008, Neuron.

[87]  G. Pourtois,et al.  Effects of perceptual learning on primary visual cortex activity in humans , 2008, Vision Research.

[88]  T. Ono,et al.  Retrospective and prospective coding for predicted reward in the sensory thalamus , 2001, Nature.

[89]  Spencer L. Smith,et al.  Parallel processing of visual space by neighboring neurons in mouse visual cortex , 2010, Nature Neuroscience.

[90]  M. Laubach,et al.  Layer-Specific Somatosensory Cortical Activation During Active Tactile Discrimination , 2004, Science.

[91]  Tobias Bonhoeffer,et al.  Lifelong learning: ocular dominance plasticity in mouse visual cortex , 2006, Current Opinion in Neurobiology.

[92]  Mark F. Bear,et al.  How Monocular Deprivation Shifts Ocular Dominance in Visual Cortex of Young Mice , 2004, Neuron.

[93]  M. Casanova Canonical circuits of the cerebral cortex as enablers of neuroprosthetics , 2013, Front. Syst. Neurosci..

[94]  Pawan Sinha,et al.  The role of sequence order in determining view canonicality for novel wire-frame objects , 2009, Attention, perception & psychophysics.

[95]  D. Hubel,et al.  Extent of recovery from the effects of visual deprivation in kittens. , 1965, Journal of neurophysiology.

[96]  C. Pennartz,et al.  A unified selection signal for attention and reward in primary visual cortex , 2013, Proceedings of the National Academy of Sciences.

[97]  James V. Stone,et al.  Object recognition: view-specificity and motion-specificity , 1999, Vision Research.

[98]  M. Bear,et al.  Instructive Effect of Visual Experience in Mouse Visual Cortex , 2006, Neuron.

[99]  Mark F. Bear,et al.  How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[100]  Mark F. Bear,et al.  Stimulus-Selective Response Plasticity in the Visual Cortex: An Assay for the Assessment of Pathophysiology and Treatment of Cognitive Impairment Associated with Psychiatric Disorders , 2012, Biological Psychiatry.

[101]  David D. Cox,et al.  'Breaking' position-invariant object recognition , 2005, Nature Neuroscience.

[102]  Shintaro Funahashi,et al.  Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. I. Cue-, delay-, and response-period activity. , 2004, Journal of neurophysiology.

[103]  Jeffrey P. Gavornik,et al.  A network of spiking neurons that can represent interval timing: mean field analysis , 2011, Journal of Computational Neuroscience.

[104]  D. Hubel,et al.  Functional architecture of area 17 in normal and monocularly deprived macaque monkeys. , 1976, Cold Spring Harbor symposia on quantitative biology.

[105]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[106]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[107]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[108]  Xiao-Jing Wang The Prefrontal Cortex as a Quintessential “Cognitive-Type” Neural Circuit , 2013 .

[109]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[110]  L. Maffei,et al.  BDNF Regulates the Maturation of Inhibition and the Critical Period of Plasticity in Mouse Visual Cortex , 1999, Cell.

[111]  J. Fuster,et al.  Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. , 1981, Science.

[112]  Otto D. Creutzfeldt,et al.  Generality of the functional structure of the neocortex , 1977, Naturwissenschaften.

[113]  Jeffrey P. Gavornik,et al.  What does scalar timing tell us about neural dynamics? , 2014, Front. Hum. Neurosci..

[114]  D. Hubel Tungsten Microelectrode for Recording from Single Units. , 1957, Science.

[115]  M. Tarr,et al.  Rotation direction affects object recognition , 2004, Vision Research.