Ieee Transactions on Visualization and Computer Graphics 1 Ball-morph: Definition, Implementation and Comparative Evaluation

We define b-compatibility for planar curves and propose three ball morphing techniques between pairs of b-compatible curves. Ball-morphs use the automatic ball-map correspondence, proposed by Chazal et al. [1], from which we derive different vertex trajectories (linear, circular, and parabolic). All three morphs are symmetric, meeting both curves with the same angle, which is a right angle for the circular and parabolic. We provide simple constructions for these ball-morphs and compare them to each other and other simple morphs (linear-interpolation, closest-projection, curvature-interpolation, Laplace-blending, and heat-propagation) using six cost measures (travel-distance, distortion, stretch, local acceleration, average squared mean curvature, and maximum squared mean curvature). The results depend heavily on the input curves. Nevertheless, we found that the linear ball-morph has consistently the shortest travel-distance and the circular ball-morph has the least amount of distortion.

[1]  M. Leyton Symmetry, Causality, Mind , 1999 .

[2]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[3]  Jarek Rossignac,et al.  J-splines , 2008, Comput. Aided Des..

[4]  Robert B. Tilove,et al.  Set Membership Classification: A Unified Approach to Geometric Intersection Problems , 1980, IEEE Transactions on Computers.

[5]  F. Thomas,et al.  The illusion of life : Disney animation , 1981 .

[6]  Hongji Yang,et al.  As-rigid-as-possible shape deformation and interpolation , 2008, J. Vis. Commun. Image Represent..

[7]  Luiz Velho,et al.  Warping and morphing of graphical objects , 1998 .

[8]  Peisheng Gao,et al.  2-D shape blending: an intrinsic solution to the vertex path problem , 1993, SIGGRAPH.

[9]  Jitendra Malik,et al.  Efficient shape matching using shape contexts , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Dinesh Manocha,et al.  Efficient computation of a simplified medial axis , 2003, SM '03.

[11]  Oliver Brock,et al.  Efficient and robust computation of an approximated medial axis , 2004, SM '04.

[12]  T. O’Neil Geometric Measure Theory , 2002 .

[13]  Hujun Bao,et al.  Poisson shape interpolation , 2005, SPM '05.

[14]  Micha Sharir,et al.  Piecewise-linear interpolation between polygonal slices , 1994, SCG '94.

[15]  William T. Reeves,et al.  Inbetweening for computer animation utilizing moving point constraints , 1981, SIGGRAPH '81.

[16]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Sen Wang,et al.  3D Surface Matching and Recognition Using Conformal Geometry , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[18]  Brian Scott Whited,et al.  Tangent-ball techniques for shape processing , 2009 .

[19]  Henry Fuchs,et al.  Optimal surface reconstruction from planar contours , 1977, SIGGRAPH.

[20]  Alan H. Barr,et al.  Global and local deformations of solid primitives , 1984, SIGGRAPH.

[21]  Panagiotis D. Kaklis,et al.  G1-smooth branching surface construction from cross sections , 2007, Comput. Aided Des..

[22]  Reinhard Klein,et al.  Reconstruction and simplification of surfaces from contours , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).

[23]  Josef Kittler,et al.  Efficient and Robust Retrieval by Shape Content through Curvature Scale Space , 1998, Image Databases and Multi-Media Search.

[24]  A. Requicha,et al.  Piecewise-circular curves for geometric modeling , 1987 .

[25]  ChenShenchang Eric,et al.  Shape Averaging and it's Applications to Industrial Design , 1989 .

[26]  Lik-Kwan Shark,et al.  An Extension of Iterative Closest Point Algorithm for 3D-2D Registration for Pre-treatment Validation in Radiotherapy , 2006, International Conference on Medical Information Visualisation - BioMedical Visualisation (MedVis'06).

[27]  Jarek Rossignac,et al.  Relative blending , 2009, Comput. Aided Des..

[28]  Alexander Kort,et al.  Computer Aided , 2022 .

[29]  Guozhao Wang,et al.  Skeleton-driven 2D distance field metamorphosis using intrinsic shape parameters , 2004, Graph. Model..

[30]  Jarek Rossignac,et al.  AGRELs and BIPs: Metamorphosis as a Bezier curve in the space of polyhedra , 1994, Comput. Graph. Forum.

[31]  Thomas W. Sederberg,et al.  A physically based approach to 2–D shape blending , 1992, SIGGRAPH.

[32]  Richard E. Parent,et al.  Shape averaging and its applications to industrial design , 1989, IEEE Computer Graphics and Applications.

[33]  Frédéric Chazal,et al.  Ball-Map: Homeomorphism between Compatible Surfaces , 2010, Int. J. Comput. Geom. Appl..

[34]  Bahram Parvin,et al.  A new regularized approach for contour morphing , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[35]  Markus H. Gross,et al.  BetweenIT: An Interactive Tool for Tight Inbetweening , 2010, Comput. Graph. Forum.

[36]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[37]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[38]  Marc Alexa,et al.  Differential coordinates for local mesh morphing and deformation , 2003, The Visual Computer.

[39]  ICP Algorithm , 2009, Encyclopedia of Biometrics.

[40]  Ari Rappoport,et al.  Shape blending using the star-skeleton representation , 1995, IEEE Computer Graphics and Applications.

[41]  Marc Alexa,et al.  As-rigid-as-possible shape interpolation , 2000, SIGGRAPH.

[42]  F. Thomas,et al.  Disney Animation: The Illusion of Life , 1981 .

[43]  Hongbo Fu,et al.  Morphing with Laplacian coordinates and spatial-temporal texture , 2005 .

[44]  Tamal K. Dey,et al.  Improved constructions of Delaunay based contour surfaces , 1999, SMA '99.

[45]  Matthias Zwicker,et al.  Mesh-based inverse kinematics , 2005, ACM Trans. Graph..

[46]  Boris Aronov,et al.  On Compatible Triangulations of Simple Polygons , 1993, Comput. Geom..

[47]  Hugues Hoppe,et al.  Inter-surface mapping , 2004, ACM Trans. Graph..

[48]  Gill Barequet,et al.  Nonlinear interpolation between slices , 2007, Int. J. Shape Model..

[49]  Frédéric Chazal,et al.  Normal-Map between Normal-Compatible Manifolds , 2007, Int. J. Comput. Geom. Appl..

[50]  F. Chazal,et al.  OrthoMap: Homeomorphism-guaranteeing normal-projection map between surfaces , 2004 .

[51]  Daniel Cohen-Or,et al.  Three-dimensional distance field metamorphosis , 1998, TOGS.

[52]  Leonidas J. Guibas,et al.  Morphing between polylines , 2001, SODA '01.

[53]  Samir Akkouche,et al.  Implicit surface reconstruction from contours , 2004, The Visual Computer.

[54]  Peter Wonka,et al.  Curve matching for open 2D curves , 2009, Pattern Recognit. Lett..

[55]  Thaddeus Beier,et al.  Feature-based image metamorphosis , 1992, SIGGRAPH.

[56]  Kun Zhou,et al.  2D shape deformation using nonlinear least squares optimization , 2006, The Visual Computer.

[57]  Edwin E. Catmull,et al.  The problems of computer-assisted animation , 1978, SIGGRAPH.