Codes and lattices in the lp metric

Codes and associated lattices are studied in the l<sub>p</sub> metric, particularly in the l<sub>1</sub> (Lee) and the l<sub>∞</sub> (maximum) distances. Discussions and results on decoding processes, classification and analysis of perfect or dense codes in these metrics are presented.

[1]  N. J. A. Sloane,et al.  An improvement to the Minkowski-Hiawka bound for packing superballs , 1987 .

[2]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[3]  S. Golomb,et al.  Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .

[4]  Sueli I. R. Costa,et al.  Classification of the perfect codes in the ∞ -Lee metric , 2015 .

[5]  Moshe Schwartz,et al.  On the non-existence of lattice tilings by quasi-crosses , 2012, 2013 Information Theory and Applications Workshop (ITA).

[6]  Frank R. Kschischang,et al.  An Algebraic Approach to Physical-Layer Network Coding , 2010, IEEE Transactions on Information Theory.

[7]  q-ary lattices in the lp norm and a generalization of the Lee metric , 2013 .

[8]  Chris Peikert,et al.  Limits on the Hardness of Lattice Problems in ℓp Norms , 2008, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[9]  Eitan Yaakobi,et al.  Coding for the Lee and Manhattan Metrics With Weighing Matrices , 2013, IEEE Trans. Inf. Theory.

[10]  Tuvi Etzion,et al.  Product Constructions for Perfect Lee Codes , 2011, IEEE Transactions on Information Theory.

[11]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[12]  N. J. A. Sloane,et al.  Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..

[13]  Eitan Yaakobi,et al.  Dense error-correcting codes in the Lee metric , 2010, 2010 IEEE Information Theory Workshop.

[14]  Sueli I. Rodrigues Costa,et al.  Decoding q-ary lattices in the Lee metric , 2011, 2011 IEEE Information Theory Workshop.

[15]  C. Y. Lee,et al.  Some properties of nonbinary error-correcting codes , 1958, IRE Trans. Inf. Theory.

[16]  Peter Horák,et al.  A new approach towards the Golomb-Welch conjecture , 2014, Eur. J. Comb..

[17]  Oded Regev,et al.  Lattice-Based Cryptography , 2006, CRYPTO.