An Entropy Formula for Time-Varying Discrete-Time Control Systems

The results of this paper generalize the formula for the entropy of a transfer function to time-varying systems. This is done through the use of some results on spectral factorizations due to Arveson and properties of the $\cW$-transform which generalizes the usual $\cZ$-transform for time-varying systems. Using the formula defined, it is shown that for linear fractional transformations like those that arise in time-varying $f$ control, there exists a unique, bounded contraction which maximizes the entropy. This generalizes known results in the time-invariant case. Possible extensions are discussed, along with state-space formulae.

[1]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[2]  R. Saeks,et al.  System theory : a Hilbert space approach , 1982 .

[3]  E. Kamen,et al.  A transfer function approach to linear time-varying discrete-time systems , 1982, 1982 21st IEEE Conference on Decision and Control.

[4]  R. B. Vinter SYSTEM THEORY A Hilbert Space Approach , 1984 .

[5]  A maximum entropy principle for contractive interpolants , 1986 .

[6]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[7]  N. Young An Introduction to Hilbert Space , 1988 .

[8]  John C. Doyle,et al.  Relations between H∞ and risk sensitive controllers , 1988 .

[9]  K. Glover,et al.  State-space formulae for all stabilizing controllers that satisfy and H ∞ norm bound and relations to risk sensitivity , 1988 .

[10]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[11]  Michael Green,et al.  Discrete time H∞ control , 1989 .

[12]  Le Yi Wang,et al.  Local–global double algebras for slow H∞ adaptation; the case of l2 disturbances , 1989 .

[13]  Keith Glover,et al.  Derivation of the maximum entropy H ∞-controller and a state-space formula for its entropy , 1989 .

[14]  P. Khargonekar,et al.  STATESPACE SOLUTIONS TO STANDARD 2 H AND H? CONTROL PROBLEMS , 1989 .

[15]  P. Whittle Risk-Sensitive Optimal Control , 1990 .

[16]  Pablo A. Iglesias,et al.  Discrete time H ∞ controllers satisfying a minimum entropy criterion , 1990 .

[17]  D. Alpay,et al.  Lossless Inverse Scattering and Reproducing Kernels for Upper Triangular Operators , 1990 .

[18]  NEST ALGEBRAS: (Pitman Research Notes in Mathematics 191) , 1990 .

[19]  Pablo A. Iglesias,et al.  Discrete time H(infinity) controllers satisfying a minimum entropy criterion , 1990 .

[20]  K. Glover,et al.  Minimum entropy H ∞ control , 1990 .

[21]  P. Khargonekar,et al.  H ∞ control of linear time-varying systems: a state-space approach , 1991 .

[22]  K. Glover,et al.  State-space approach to discrete-time H∞ control , 1991 .

[23]  L. Y. Wang,et al.  Local-global double algebras for slow H/sup infinity / adaptation. I. Inversion and stability , 1991 .

[24]  A maximum entropy principle in the general framework of the band method , 1991 .

[25]  G. Zames,et al.  Local-global double algebras for slow H/sup infinity / adaptation. II. Optimization of stable plants , 1991 .

[26]  A.-J. Van der Veen,et al.  The bounded real lemma for discrete time-varying systems with application to robust output feedback , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[27]  Pablo A. Iglesias On the Stabilization of Discrete-Time Linear Time-Varying Systems , 1994 .

[28]  M. A. Peters,et al.  On the induced norms of discrete-time and hybrid time-varying systems , 1997 .