An experimental study of approximation algorithms for the joint spectral radius
暂无分享,去创建一个
[1] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[2] Donald Ervin Knuth,et al. The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .
[3] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[4] Yang Wang,et al. Bounded semigroups of matrices , 1992 .
[5] J. Lagarias,et al. The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .
[6] L. Gurvits. Stability of discrete linear inclusion , 1995 .
[7] M. Maesumi. An efficient lower bound for the generalized spectral radius , 1996 .
[8] G. Gripenberg. COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .
[9] John N. Tsitsiklis,et al. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..
[10] J. Mairesse,et al. Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .
[11] Paul H. Siegel,et al. On codes that avoid specified differences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[12] F. Wirth. The generalized spectral radius and extremal norms , 2002 .
[13] Vincent D. Blondel,et al. An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..
[14] V. Kozyakin. Proof of a Counterexample to the Finiteness Conjecture in the Spirit of the Theory of Dynamical Systems , 2005 .
[15] Y. Nesterov,et al. On the accuracy of the ellipsoid norm approximation of the joint spectral radius , 2005 .
[16] Vincent D. Blondel,et al. Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..
[17] Robert Shorten,et al. Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..
[18] V. Kozyakin. Structure of extremal trajectories of discrete linear systems and the finiteness conjecture , 2007 .
[19] M. Zennaro,et al. Balanced Complex Polytopes and Related Vector and Matrix Norms , 2007 .
[20] A. Jadbabaie,et al. Approximation of the joint spectral radius using sum of squares , 2007, 0712.2887.
[21] Nicola Guglielmi,et al. Finding Extremal Complex Polytope Norms for Families of Real Matrices , 2009, SIAM J. Matrix Anal. Appl..
[22] Vincent D. Blondel,et al. Overlap-free words and spectra of matrices , 2007, Theor. Comput. Sci..
[23] V. Kozyakin. On accuracy of approximation of the spectral radius by the Gelfand formula , 2008, 0810.2856.
[24] R. Jungers. The Joint Spectral Radius: Theory and Applications , 2009 .
[25] Vincent D. Blondel,et al. Joint Spectral Characteristics of Matrices: A Conic Programming Approach , 2010, SIAM J. Matrix Anal. Appl..
[26] M. Zennaro,et al. Finiteness property of pairs of 2× 2 sign-matrices via real extremal polytope norms , 2010 .
[27] Nikita Sidorov,et al. An explicit counterexample to the Lagarias-Wang finiteness conjecture , 2010, ArXiv.
[28] V. Kozyakin. ITERATIVE BUILDING OF BARABANOV NORMS AND COMPUTATION OF THE JOINT SPECTRAL RADIUS FOR MATRIX SETS , 2008, 0810.2154.
[29] V. Kozyakin. A relaxation scheme for computation of the joint spectral radius of matrix sets , 2008, 0810.4230.
[30] V. Blondel,et al. Approximating the joint spectral radius using a genetic algorithm framework , 2011 .
[31] Christos Georgakis,et al. 18th IFAC World Congress: Milano, Italy, August 28 to September 2, 2011 , 2013 .