Polynomial root finding over local rings and application to error correcting codes

This article is devoted to algorithms for computing all the roots of a univariate polynomial with coefficients in a complete commutative Noetherian unramified regular local domain, which are given to a fixed common finite precision. We study the cost of our algorithms, discuss their practical performances, and apply our results to the Guruswami and Sudan list decoding algorithm over Galois rings.

[1]  T. Moon Error Correction Coding: Mathematical Methods and Algorithms , 2005 .

[2]  M. A. Armand List decoding of generalized reed-solomon codes over commutative rings with identity , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[3]  Marc André Armand,et al.  Improved list decoding of generalized reed-solomon and alternant codes over rings , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[4]  I. S. Hsu,et al.  Simplified procedure for correcting both errors and erasures of Reed-Solomon code using Euclidean algorithm , 1987 .

[5]  R. Raghavendran,et al.  Finite associative rings , 1969 .

[6]  J. Gathen Hensel and Newton methods in valuation rings , 1984 .

[7]  Emmanuel Hallouin Computing Local Integral Closures , 2001, J. Symb. Comput..

[8]  M. Alekhnovich Linear Diophantine equations over polynomials and soft decoding of Reed-Solomon codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[9]  Daniel Augot,et al.  List-decoding of binary Goppa codes up to the binary Johnson bound , 2010, 2011 IEEE Information Theory Workshop.

[10]  J. V. D. Hoeven,et al.  Relaxed algorithms for p-adic numbers , 2011 .

[11]  Grégoire Lecerf,et al.  Fast separable factorization and applications , 2008, Applicable Algebra in Engineering, Communication and Computing.

[12]  Johannes Buchmann,et al.  Coding Theory, Cryptography and Related Areas , 2000, Springer Berlin Heidelberg.

[13]  C. Hoffmann Algebraic curves , 1988 .

[14]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[15]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[16]  Series Expansions of Algebraic Functions , 1995 .

[17]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[18]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[19]  Adrien Poteaux,et al.  Complexity bounds for the rational Newton-Puiseux algorithm over finite fields , 2011, Applicable Algebra in Engineering, Communication and Computing.

[20]  Éric Schost,et al.  Polynomial evaluation and interpolation on special sets of points , 2005, J. Complex..

[21]  D. Segal ALGEBRA: (Graduate Texts in Mathematics, 73) , 1982 .

[22]  Martin Fürer,et al.  Faster integer multiplication , 2007, STOC '07.

[23]  Marc André Armand,et al.  List decoding of generalized Reed-Solomon codes over commutative rings , 2005, IEEE Transactions on Information Theory.

[24]  Maki Iwami,et al.  Extension of expansion base algorithm for multivariate analytic factorization including the case of singular leading coefficient , 2005, SIGS.

[25]  P. G. Walsh,et al.  ON THE COMPLEXITY OF RATIONAL PUISEUX EXPANSIONS , 1999 .

[26]  D. V. Chudnovsky,et al.  On expansion of algebraic functions in power and Puiseux series, I , 1986, J. Complex..

[27]  R. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[28]  D. Duval Rational Puiseux expansions , 1989 .

[29]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[30]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[31]  Kiran S. Kedlaya,et al.  The algebraic closure of the power series field in positive characteristic , 1998, math/9810142.

[32]  Tzee Char Kuo Generalized Newton-Puiseux theory and Hensel's lemma in ${f C}[![x,y]!]$ , 1989 .

[33]  P. G. Walsh,et al.  A polynomial-time complexity bound for the computation of the singular part of a Puiseux expansion of an algebraic function , 2000, Math. Comput..

[34]  David Joyner,et al.  Coding Theory and Cryptography: From Enigma and Geheimschreiber to Quantum Theory , 1999 .

[35]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[36]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[37]  Shuhong Gao,et al.  A New Algorithm for Decoding Reed-Solomon Codes , 2003 .

[38]  Joachim von zur Gathen,et al.  Modern Computer Algebra (3. ed.) , 2003 .

[39]  J. P. G. Henry,et al.  Complexity of computation of embedded resolution of algebraic curves , 1987, EUROCAL.

[40]  I. S. Cohen On the structure and ideal theory of complete local rings , 1946 .

[41]  Judy L. Walker Algebraic Geometric Codes over Rings , 1999 .

[42]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[43]  Tom Høholdt,et al.  Decoding Reed-Solomon Codes Beyond Half the Minimum Distance , 2000 .

[44]  Shuhong Gao,et al.  Computing Roots of Polynomials over Function Fields of Curves , 1999 .

[45]  Daniel Augot,et al.  On the Roth and Ruckenstein equations for the Guruswami-Sudan algorithm , 2008, 2008 IEEE International Symposium on Information Theory.

[46]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).