Computing the Voronoi diagram of a 3-D polyhedron by separate computation of its symbolic and geometric parts

The paper presents an algorithm to construct the Voronoi diagram of a 3-D Iinear polyhedron. The robustness and simplicity of the algorithm are due to the separation between the computation of the symbolic and geometric parts of the diagram. The symbolic part of the diagram, the Voronoi graph, is computed by a space subdivision algorithm. The computation of the Voronoi graph utilizes only relatively simple 2-D geometric computations. Given the Voronoi graph, and a geometric approximation given by the space subdivision, the construction of the geometric part is simple and reliable. An important advantage of the algorithm is that it enables local and partial computation of the Voronoi diagram. In a previous paper we have given a detailed proof of correctness of the computation of the Voronoi graph. This paper complements the previous one by detailing the algorithm and its implementation. In addition, this paper describes the computation of the geometric part of the diagram. CR

[1]  Hao Chen,et al.  An accelerated triangulation method for computing the skeletons of free-form solid models , 1997, Comput. Aided Des..

[2]  Damian J. Sheehy,et al.  Computing the medial surface of a solid from a domain Delaunay triangulation , 1995, Symposium on Solid Modeling and Applications.

[3]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[4]  Evan C. Sherbrooke 3-D shape interrogation by medial axis transform , 1996 .

[5]  John A. Goldak,et al.  Constructing 3-D discrete medial axis , 1991, SMA '91.

[6]  Bruce Randall Donald,et al.  Simplified Voronoi diagrams , 1987, SCG '87.

[7]  James H. Davenport,et al.  Voronoi diagrams of set-theoretic solid models , 1992, IEEE Computer Graphics and Applications.

[8]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[9]  Brett A. Geier,et al.  Michigan , 1896, The Journal of comparative medicine and veterinary archives.

[10]  G. Renner,et al.  Medial surface generation and refinement , 1997 .

[11]  Alla Sheffer,et al.  Hexahedral Mesh Generation Using Voronoi Skeletons , 1998, IMR.

[12]  George M. Turkiyyah,et al.  Computation of 3D skeletons using a generalized Delaunay triangulation technique , 1995, Comput. Aided Des..

[13]  Victor J. Milenkovic,et al.  Robust Construction of the Voronoi Diagram of a Polyhedron , 1993, CCCG.

[14]  Fritz B. Prinz,et al.  Continuous skeletons of discrete objects , 1993, Solid Modeling and Applications.

[15]  Martin Held,et al.  On Computing Voronoi Diagrams of Convex Polyhedra by Means of Wavefront Propagation , 1994, CCCG.

[16]  E. Bertin,et al.  A 3D generalized Voronoi diagram for a set of polyhedra , 1994 .

[17]  Nicholas M. Patrikalakis,et al.  Computation of the Medial Axis Transform of 3-D polyhedra , 1995, Symposium on Solid Modeling and Applications.

[18]  M. Overmars,et al.  Approximating generalized Voronoi diagrams in any dimension , 1995 .

[19]  Christoph M. Hoffmann,et al.  How to Construct the Skeleton of CSG Objects , 1990 .

[20]  Mohsen Rezayat,et al.  Midsurface abstraction from 3D solid models: general theory, applications , 1996, Comput. Aided Des..

[21]  Damian J. Sheehy,et al.  Shape Description By Medial Surface Construction , 1996, IEEE Trans. Vis. Comput. Graph..

[22]  Cecil G. Armstrong,et al.  Modelling requirements for finite-element analysis , 1994, Comput. Aided Des..

[23]  Mark A. Ganter,et al.  Skeleton-based modeling operations on solids , 1997, SMA '97.

[24]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[25]  Nicholas M. Patrikalakis,et al.  An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids , 1996, IEEE Trans. Vis. Comput. Graph..