Engineering antibiotic production and overcoming bacterial resistance

Progress in DNA technology, analytical methods and computational tools is leading to new developments in synthetic biology and metabolic engineering, enabling new ways to produce molecules of industrial and therapeutic interest. Here, we review recent progress in both antibiotic production and strategies to counteract bacterial resistance to antibiotics. Advances in sequencing and cloning are increasingly enabling the characterization of antibiotic biosynthesis pathways, and new systematic methods for de novo biosynthetic pathway prediction are allowing the exploration of the metabolic chemical space beyond metabolic engineering. Moreover, we survey the computer‐assisted design of modular assembly lines in polyketide synthases and non‐ribosomal peptide synthases for the development of tailor‐made antibiotics. Nowadays, production of novel antibiotic can be tranferred into any chosen chassis by optimizing a host factory through specific strain modifications. These advances in metabolic engineering and synthetic biology are leading to novel strategies for engineering antimicrobial agents with desired specificities.

[1]  J. Collins,et al.  How antibiotics kill bacteria: from targets to networks , 2010, Nature Reviews Microbiology.

[2]  A. Delcour,et al.  Outer membrane permeability and antibiotic resistance. , 2009, Biochimica et biophysica acta.

[3]  J. Nielsen,et al.  Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. , 2005, Genome research.

[4]  R. Breitling,et al.  Genome‐wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus , 2011, Microbial biotechnology.

[5]  M. Marahiel,et al.  Daptomycin, a Bacterial Lipopeptide Synthesized by a Nonribosomal Machinery* , 2010, The Journal of Biological Chemistry.

[6]  Yang Liu,et al.  Engineered Vaginal Lactobacillus Strain for Mucosal Delivery of the Human Immunodeficiency Virus Inhibitor Cyanovirin-N , 2006, Antimicrobial Agents and Chemotherapy.

[7]  Chunhui Li,et al.  Exploring the diversity of complex metabolic networks , 2005, Bioinform..

[8]  A. Lantz,et al.  Systems biology of antibiotic production by microorganisms. , 2007, Natural product reports.

[9]  R. Bonomo,et al.  Three Decades of β-Lactamase Inhibitors , 2010, Clinical Microbiology Reviews.

[10]  Lynda B. M. Ellis,et al.  The University of Minnesota Biocatalysis/Biodegradation Database: improving public access , 2009, Nucleic Acids Res..

[11]  H. Chambers,et al.  Staphylococcus aureus with Heterogeneous Resistance to Vancomycin: Epidemiology, Clinical Significance, and Critical Assessment of Diagnostic Methods , 2003, Antimicrobial Agents and Chemotherapy.

[12]  Luay Nakhleh,et al.  Properties of metabolic graphs: biological organization or representation artifacts? , 2011, BMC Bioinformatics.

[13]  Amy C. Anderson,et al.  Computational structure-based redesign of enzyme activity , 2009, Proceedings of the National Academy of Sciences.

[14]  Oliver Kohlbacher,et al.  MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization , 2008, Bioinform..

[15]  Vassily Hatzimanikatis,et al.  Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways. , 2005, Journal of the American Chemical Society.

[16]  Farren J. Isaacs,et al.  Tracking, tuning, and terminating microbial physiology using synthetic riboregulators , 2010, Proceedings of the National Academy of Sciences.

[17]  A. Barabasi,et al.  Blueprint for antimicrobial hit discovery targeting metabolic networks , 2010, Proceedings of the National Academy of Sciences.

[18]  J. Nielsen,et al.  Industrial systems biology. , 2010, Biotechnology and bioengineering.

[19]  Jean-Loup Faulon,et al.  Genome scale enzyme–metabolite and drug–target interaction predictions using the signature molecular descriptor , 2008 .

[20]  Yang Liu,et al.  Route Designer: A Retrosynthetic Analysis Tool Utilizing Automated Retrosynthetic Rule Generation , 2009, J. Chem. Inf. Model..

[21]  D. Lafontaine,et al.  Therapeutic applications of ribozymes and riboswitches. , 2010, Current opinion in pharmacology.

[22]  J. Collins,et al.  Bacterial charity work leads to population-wide resistance , 2010, Nature.

[23]  James J. Collins,et al.  Dispersing biofilms with engineered enzymatic bacteriophage , 2007, Proceedings of the National Academy of Sciences.

[24]  Kiejung Park,et al.  MapsiDB: an integrated web database for type I polyketide synthases , 2009, Bioprocess and biosystems engineering.

[25]  Christopher D Reeves,et al.  Combinatorial biosynthesis for drug development. , 2007, Current opinion in microbiology.

[26]  Rainer Schrader,et al.  Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC) , 2005, Bioinform..

[27]  Juho Rousu,et al.  BMC Systems Biology BioMed Central Methodology article , 2009 .

[28]  S. Rao,et al.  PathMiner: predicting metabolic pathways by heuristic search , 2003, Bioinform..

[29]  Chaitan Khosla,et al.  Structure and mechanism of the 6-deoxyerythronolide B synthase. , 2007, Annual review of biochemistry.

[30]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[31]  Jay D Keasling,et al.  Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. , 2009, Journal of biotechnology.

[32]  Won Seok Jung,et al.  Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae , 2006, Applied Microbiology and Biotechnology.

[33]  J. Keasling Synthetic biology for synthetic chemistry. , 2008, ACS chemical biology.

[34]  Kyongbum Lee,et al.  Computational analysis of phenotypic space in heterologous polyketide biosynthesis--applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae. , 2010, Journal of theoretical biology.

[35]  Proteomic analysis of polyketide and nonribosomal peptide biosynthesis. , 2011, Current opinion in chemical biology.

[36]  M. Kutateladze,et al.  Bacteriophages as potential new therapeutics to replace or supplement antibiotics. , 2010, Trends in biotechnology.

[37]  Xinrui Duan,et al.  An engineered riboswitch as a potential gene-regulatory platform for reducing antibacterial drug resistance. , 2011, Chemical communications.

[38]  R. Süssmuth,et al.  Bromobalhimycin and Chlorobromobalhimycins—Illuminating the Potential of Halogenases in Glycopeptide Antibiotic Biosyntheses , 2003, Chembiochem : a European journal of chemical biology.

[39]  J. Recktenwald,et al.  Identification and Analysis of the Balhimycin Biosynthetic Gene Cluster and Its Use for Manipulating Glycopeptide Biosynthesis in Amycolatopsis mediterranei DSM5908 , 1999, Antimicrobial Agents and Chemotherapy.

[40]  J. Pagés,et al.  Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. , 2009, Biochimica et biophysica acta.

[41]  Jens Nielsen,et al.  Metabolic Network Analysis of Streptomyces tenebrarius, a Streptomyces Species with an Active Entner-Doudoroff Pathway , 2005, Applied and Environmental Microbiology.

[42]  Lydia E. Kavraki,et al.  Finding metabolic pathways using atom tracking , 2010, Bioinform..

[43]  Rainer Breitling,et al.  Metabolic modeling and analysis of the metabolic switch in Streptomyces coelicolor , 2010, BMC Genomics.

[44]  Gregory Kucherov,et al.  NORINE: a database of nonribosomal peptides , 2007, Nucleic Acids Res..

[45]  Sunwon Park,et al.  Prediction of novel synthetic pathways for the production of desired chemicals , 2010, BMC Systems Biology.

[46]  David R. Liu,et al.  Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes , 2007, Proceedings of the National Academy of Sciences.

[47]  E. Bossi,et al.  Assembly of large genomic segments in artificial chromosomes by homologous recombination in Escherichia coli. , 2001, Nucleic acids research.

[48]  C. Walsh The chemical versatility of natural-product assembly lines. , 2008, Accounts of chemical research.

[49]  Gregory Kucherov,et al.  Diversity of Monomers in Nonribosomal Peptides: towards the Prediction of Origin and Biological Activity , 2010, Journal of bacteriology.

[50]  Rainer Breitling,et al.  Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms , 2011, Nature Reviews Microbiology.

[51]  C. Walsh,et al.  Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. , 2001, Current opinion in chemical biology.

[52]  Liping Xie,et al.  Studies on amino acid replacement and inhibitory activity of a β-lactamase inhibitory peptide , 2010, Biochemistry (Moscow).

[53]  Stefan Kramer,et al.  Data-driven extraction of relative reasoning rules to limit combinatorial explosion in biodegradation pathway prediction , 2008, Bioinform..

[54]  R. Thompson,et al.  Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. , 1997, Chemistry & biology.

[55]  Timothy K Lu,et al.  Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy , 2009, Proceedings of the National Academy of Sciences.

[56]  Hyun Uk Kim,et al.  Metabolic engineering of microorganisms: general strategies and drug production. , 2009, Drug discovery today.

[57]  Chaitan Khosla,et al.  Revisiting the modularity of modular polyketide synthases. , 2009, Current opinion in chemical biology.

[58]  Timothy S. Ham,et al.  Production of the antimalarial drug precursor artemisinic acid in engineered yeast , 2006, Nature.

[59]  A. Barabasi,et al.  Targets Drug Genomes Identify Novel Antimicrobial Staphylococcus Aureus of Multiple Reconstruction and Flux Balance Analysis Comparative Genome-scale Metabolic Supplemental Material , 2009 .

[60]  Ben Shen,et al.  Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. , 2003, Current opinion in chemical biology.

[61]  D Reichmann,et al.  Binding hot spots in the TEM1-BLIP interface in light of its modular architecture. , 2007, Journal of molecular biology.

[62]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[63]  Keith E. J. Tyo,et al.  Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli , 2010, Science.

[64]  Marten Veenhuis,et al.  An Engineered Yeast Efficiently Secreting Penicillin , 2009, PloS one.

[65]  Gitanjali Yadav,et al.  SBSPKS: structure based sequence analysis of polyketide synthases , 2010, Nucleic Acids Res..

[66]  Jason A. Papin,et al.  Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology , 2008, PLoS Comput. Biol..

[67]  Peter D. Karp,et al.  The Pathway Tools software , 2002, ISMB.

[68]  Ho Young Lee,et al.  Bioassay-Guided Evolution of Glycosylated Macrolide Antibiotics in Escherichia coli , 2007, PLoS biology.

[69]  Vincent Fromion,et al.  Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis , 2008, BMC Systems Biology.

[70]  Sarah J Kodumal,et al.  Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Pierre Dupont,et al.  Systems biology Advance Access publication March 12, 2010 , 2009 .

[72]  B A Pfeifer,et al.  Biosynthesis of Complex Polyketides in a Metabolically Engineered Strain of E. coli , 2001, Science.

[73]  J. Pelletier,et al.  Antimicrobial drug discovery through bacteriophage genomics , 2004, Nature Biotechnology.

[74]  Gabriel C. Wu,et al.  Synthetic protein scaffolds provide modular control over metabolic flux , 2009, Nature Biotechnology.

[75]  Jotun Hein,et al.  Rahnuma: hypergraph-based tool for metabolic pathway prediction and network comparison , 2009, Bioinform..

[76]  Minoru Kanehisa,et al.  Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. , 2007, Journal of molecular biology.

[77]  Susumu Goto,et al.  PathPred: an enzyme-catalyzed metabolic pathway prediction server , 2010, Nucleic Acids Res..

[78]  D. Jonas,et al.  Beta-lactams and Beta-lactamase-inhibitors in current- or potential-clinical practice: A comprehensive update , 2009, Critical reviews in microbiology.

[79]  M. Marahiel,et al.  Chapter 13. Nonribosomal peptide synthetases mechanistic and structural aspects of essential domains. , 2009, Methods in enzymology.

[80]  Christopher A. Voigt,et al.  Environmentally controlled invasion of cancer cells by engineered bacteria. , 2006, Journal of molecular biology.

[81]  Dylan Alexander,et al.  Combinatorial biosynthesis of novel antibiotics related to daptomycin , 2006, Proceedings of the National Academy of Sciences.

[82]  M. Marahiel,et al.  Conformational Switches Modulate Protein Interactions in Peptide Antibiotic Synthetases , 2006, Science.