Brain Computation: A Computer Science Perspective

The brain carries out tasks that are very demanding from a computational perspective, apparently powered by a mere 20 W. This fact has intrigued computer scientists for many decades, and is currently drawing many of them to the quest of acquiring a computational understanding of the brain. Yet, at present there is no productive interaction of computer scientists with neuroscientists in this quest. Research in computational neuroscience is advancing at a rapid pace, and the resulting abundance of facts and models makes it increasingly difficult for scientists from other fields to engage in brain research. The goal of this article is to provide—along with a few words of caution—background, up-to-date references on data and models in neuroscience, and open problems that appear to provide good opportunities for theoretical computer scientists to enter the fascinating field of brain computation.

[1]  R. Yuste,et al.  Visual stimuli recruit intrinsically generated cortical ensembles , 2014, Proceedings of the National Academy of Sciences.

[2]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[3]  G. Marcus The Algebraic Mind: Integrating Connectionism and Cognitive Science , 2001 .

[4]  Steven M Frankland,et al.  An architecture for encoding sentence meaning in left mid-superior temporal cortex , 2015, Proceedings of the National Academy of Sciences.

[5]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[6]  Thomas L. Dean,et al.  The atoms of neural computation , 2014, Science.

[7]  Andres D. Grosmark,et al.  Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences , 2016, Science.

[8]  Wolfgang Maass,et al.  Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity , 2013, PLoS Comput. Biol..

[9]  Leslie G. Valiant,et al.  Circuits of the mind , 1994 .

[10]  K. Svoboda,et al.  Experience-dependent structural synaptic plasticity in the mammalian brain , 2009, Nature Reviews Neuroscience.

[11]  Leslie G. Valiant,et al.  A neuroidal architecture for cognitive computation , 2000, JACM.

[12]  György Buzsáki,et al.  Neural Syntax: Cell Assemblies, Synapsembles, and Readers , 2010, Neuron.

[13]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[14]  Leslie G. Valiant,et al.  Memorization and Association on a Realistic Neural Model , 2005, Neural Computation.

[15]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[16]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.

[17]  Christos H. Papadimitriou,et al.  Associations between memory traces emerge in a generic neural circuit model through STDP , 2017 .

[18]  David D. Cox,et al.  Do we understand high-level vision? , 2014, Current Opinion in Neurobiology.

[19]  Noam Nisan,et al.  Algorithmic Mechanism Design , 2001, Games Econ. Behav..

[20]  Santosh S. Vempala,et al.  Cortical Computation via Iterative Constructions , 2016, COLT.

[21]  J. Livet,et al.  A technicolour approach to the connectome , 2008, Nature Reviews Neuroscience.

[22]  Christos H. Papadimitriou,et al.  Assembly pointers for variable binding in networks of spiking neurons , 2016 .

[23]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[24]  H. Sebastian Seung,et al.  Neuroscience: Towards functional connectomics , 2011, Nature.

[25]  VerstraetenD.,et al.  2007 Special Issue , 2007 .

[26]  M. Weliky,et al.  Small modulation of ongoing cortical dynamics by sensory input during natural vision , 2004, Nature.

[27]  Noga Alon,et al.  Approximating the Cut-Norm via Grothendieck's Inequality , 2006, SIAM J. Comput..

[28]  S. Rumpel,et al.  Discrete Neocortical Dynamics Predict Behavioral Categorization of Sounds , 2012, Neuron.

[29]  S. Siegelbaum,et al.  Recurrent Circuitry Dynamically Shapes the Activation of Piriform Cortex , 2011, Neuron.

[30]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[31]  B. Bollobás The evolution of random graphs , 1984 .

[32]  P. Erdös,et al.  The Representation of a Graph by Set Intersections , 1966, Canadian Journal of Mathematics.

[33]  John von Neumann,et al.  The Computer and the Brain , 1960 .

[34]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[35]  Wolfgang Maass,et al.  Noise as a Resource for Computation and Learning in Networks of Spiking Neurons , 2014, Proceedings of the IEEE.

[36]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[37]  Christos H. Papadimitriou,et al.  Algorithms, games, and the internet , 2001, STOC '01.

[38]  N. Ziv,et al.  Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity , 2009, PLoS biology.

[39]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[40]  Alois Schlögl,et al.  Synaptic mechanisms of pattern completion in the hippocampal CA3 network , 2016, Science.

[41]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[42]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[43]  G. Buzsáki,et al.  The log-dynamic brain: how skewed distributions affect network operations , 2014, Nature Reviews Neuroscience.

[44]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[45]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[46]  Terrence J. Sejnowski,et al.  What Makes a Dynamical System Computationally Powerful , 2007 .

[47]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[48]  Jun Noguchi,et al.  Structural dynamics of dendritic spines in memory and cognition , 2010, Trends in Neurosciences.

[49]  G. Bi,et al.  Temporal modulation of spike-timing-dependent plasticity , 2022 .

[50]  David J. Field,et al.  How Close Are We to Understanding V1? , 2005, Neural Computation.

[51]  Jochen Triesch,et al.  Spike avalanches in vivo suggest a driven, slightly subcritical brain state , 2014, Front. Syst. Neurosci..

[52]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[53]  Santosh S. Vempala,et al.  Long Term Memory and the Densest K-Subgraph Problem , 2018, ITCS.

[54]  I. Fried,et al.  Rapid Encoding of New Memories by Individual Neurons in the Human Brain , 2015, Neuron.

[55]  Tomaso Poggio,et al.  From Understanding Computation to Understanding Neural Circuitry , 1976 .

[56]  Wolfgang Maass,et al.  Searching for principles of brain computation , 2016, Current Opinion in Behavioral Sciences.

[57]  Henry Kennedy,et al.  Brain structure and dynamics across scales: in search of rules , 2016, Current Opinion in Neurobiology.

[58]  David D. Cox,et al.  Untangling invariant object recognition , 2007, Trends in Cognitive Sciences.

[59]  Chris Eliasmith,et al.  Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems , 2004, IEEE Transactions on Neural Networks.

[60]  H. Eichenbaum,et al.  Robust Conjunctive Item–Place Coding by Hippocampal Neurons Parallels Learning What Happens Where , 2009, The Journal of Neuroscience.

[61]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[62]  Andreas Klaus,et al.  Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state , 2015, eLife.

[63]  I. Fried,et al.  Long-term coding of personal and universal associations underlying the memory web in the human brain , 2016, Nature Communications.

[64]  K. Harris,et al.  Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations , 2009, Neuron.

[65]  Itamar Pitowsky,et al.  Correlation polytopes: Their geometry and complexity , 1991, Math. Program..

[66]  Robert A. Legenstein,et al.  2007 Special Issue: Edge of chaos and prediction of computational performance for neural circuit models , 2007 .

[67]  J. Hawkins,et al.  On Intelligence , 2004 .

[68]  Konrad P. Körding,et al.  Toward an Integration of Deep Learning and Neuroscience , 2016, bioRxiv.