High-Throughput Design of Non-oxide p-Type Transparent Conducting Materials: Data Mining, Search Strategy, and Identification of Boron Phosphide

High-performance p-type transparent conducting materials (TCMs) are needed in a wide range of applications ranging from solar cells to transparent electronics. p-type TCMs require a large band gap (for transparency), low hole effective mass (for high mobility), and hole dopability. It has been demonstrated that oxides have inherent limitations in terms of hole effective masses making them difficult to use as a high-performance p-type TCM. In this work, we use a high-throughput computational approach to identify novel, non-oxide, p-type TCMs. By data mining a large computational data set (more than 30,000 compounds), we demonstrate that non-oxide materials can lead to much lower hole effective masses but to the detriment of smaller gaps and lower transparencies. We propose a strategy to overcome this fundamental correlation between low effective mass and small band gap by exploiting the weak absorption for indirect optical transitions. We apply this strategy to phosphides and identify zinc blende boron pho...

[1]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[2]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[3]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[4]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[5]  Hideo Hosono,et al.  p-channel thin-film transistor using p-type oxide semiconductor, SnO , 2008 .

[6]  A. Janotti,et al.  Ambipolar doping in SnO , 2013 .

[7]  Stefano Curtarolo,et al.  High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. , 2011, ACS combinatorial science.

[8]  Alex Zunger,et al.  Practical doping principles , 2003 .

[9]  P. Gielisse,et al.  Synthesis of single crystal boron phosphide , 1973 .

[10]  Liping Yu,et al.  Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements , 2014, Nature Communications.

[11]  B. Stone,et al.  Semiconducting Properties of Cubic Boron Phosphide , 1960 .

[12]  Cheol-hee Park,et al.  p-Type conductivity in wide-band-gap BaCuQF (Q=S, Se) , 2003 .

[13]  I. Sharp,et al.  P‐Type Transparent Cu‐Alloyed ZnS Deposited at Room Temperature , 2016 .

[14]  Hideo Hosono,et al.  P-type electrical conduction in transparent thin films of CuAlO2 , 1997, Nature.

[15]  R. Palgrave,et al.  Engineering Valence Band Dispersion for High Mobility p-Type Semiconductors , 2017 .

[16]  C. Granqvist Transparent conductors as solar energy materials: A panoramic review , 2007 .

[17]  M. Iwami,et al.  Crystal growth of boron mono-phosphide and its electrical and optical properties , 1975 .

[18]  M. Shimode,et al.  Fabrication of bipolar CuInO2 with delafossite structure , 2003 .

[19]  Gian-Marco Rignanese,et al.  High-Mobility Bismuth-based Transparent p-Type Oxide from High-Throughput Material Screening , 2016 .

[20]  D. Keszler,et al.  Transparent p-type conducting BaCu2S2 films , 2002 .

[21]  Geoffroy Hautier,et al.  Electronic structure and defect properties of B6O from hybrid functional and many-body perturbation theory calculations: A possible ambipolar transparent conductor , 2014 .

[22]  A. Sleight Chemistry of Band Structure Engineering , 2011 .

[23]  H. Hosono,et al.  Transparent p-type semiconductor: LaCuOS layered oxysulfide , 2000 .

[24]  J. Woicik,et al.  Origin of the Bipolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional Theory , 2013 .

[25]  D. Ginley,et al.  Handbook of transparent conductors , 2011 .

[26]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[27]  Gerbrand Ceder,et al.  Identification and design principles of low hole effective mass p-type transparent conducting oxides , 2013, Nature Communications.

[28]  E. Fortunato,et al.  Transparent Conducting Oxides for Photovoltaics , 2007 .

[29]  R. Egdell,et al.  P-type transparent conducting oxides , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  Gian-Marco Rignanese,et al.  How Does Chemistry Influence Electron Effective Mass in Oxides? A High-Throughput Computational Analysis , 2014 .

[31]  Electronic structure of BAs and boride III-V alloys , 2000, cond-mat/0009063.

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[34]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[35]  J. Robertson,et al.  Limits to doping in oxides , 2011 .

[36]  H. Hosono,et al.  Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure , 2001 .

[37]  D. Scanlon,et al.  On the possibility of p-type SnO2 , 2012 .

[38]  Wei Chen,et al.  FireWorks: a dynamic workflow system designed for high‐throughput applications , 2015, Concurr. Comput. Pract. Exp..

[39]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[40]  G. Rignanese,et al.  Influence of the “second gap” on the transparency of transparent conducting oxides: An ab initio study , 2016, 1603.04038.

[41]  Claire J. Carmalt,et al.  n-Type doped transparent conducting binary oxides: an overview , 2016 .

[42]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[43]  Y. Kumashiro Refractory semiconductor of boron phosphide , 1990 .

[44]  G. Kresse,et al.  First-principles calculations for point defects in solids , 2014 .

[45]  M. Takigawa,et al.  Epitaxial growth of BP compounds on Si substrates using the B2H6-PH3-H2 system , 1974 .