Rapid path-planning algorithms for autonomous proximity operations of satellites

of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy RAPID PATH-PLANNING ALGORITHMS FOR AUTONOMOUS PROXIMITY OPERATIONS OF SATELLITES By Josue David Muñoz August 2011 Chair: Norman G. Fitz-Coy Major: Aerospace Engineering Autonomous proximity operations (APOs) can be bifurcated into two phases: (i) close-range rendezvous and (ii) final approach or endgame. For each APO phase, algorithms capable of real-time path planning provide the greatest ability to react to “unmodeled” events, thus enabling the highest level of autonomy. This manuscript explores methodologies for real-time computation of APO trajectories for both APO phases. For the close-range rendezvous trajectories, an Adaptive Artificial Potential Function (AAPF) methodology is developed. The AAPF method is a modification of the Artificial Potential Function (APF) methodology which has favorable convergence characteristics. Building on these characteristics, the modification involves embedding the system dynamics and a performance criterion into the APF formulation resulting in a tunable system. Near-minimum time and/or near-minimum fuel trajectories are obtained by selecting the tuning parameter. Monte Carlo simulations are performed to assess the performance of the AAPF methodology. For the final approach or endgame trajectories, two methodologies are considered: a Picard Iteration (PI) and a Homotopy Continuation (HC). Problems in this APO phase are typically solved as a finite horizon linear quadratic (LQ) problem, which essentially are solved as a final value problem with a Differential Riccati Equation (DRE). The PI and HC methods are well known tools for solving differential equations and are

[1]  Derek F Lawden,et al.  Optimal trajectories for space navigation , 1964 .

[2]  Peter H. Zipfel Modeling and Simulation of Aerospace Vehicle Dynamics (Aiaa Education) , 2003 .

[3]  Robert Bell,et al.  Autonomous rendezvous and docking technologies: status and prospects , 2003, SPIE Defense + Commercial Sensing.

[4]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[5]  Richard M. Murray,et al.  Vehicle motion planning using stream functions , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[6]  Albert Bosse,et al.  SUMO: spacecraft for the universal modification of orbits , 2004, SPIE Defense + Commercial Sensing.

[7]  Daniel M. Helmick,et al.  Autonomy for Mars Rovers: Past, Present, and Future , 2008, Computer.

[8]  Fredrik Nilsson,et al.  PRISMA : an in-orbit test bed for guidance, navigation, and control experiments , 2009 .

[9]  T. S. Kelso,et al.  Improved Conjunction Analysis via Collaborative Space Situational Awareness , 2008 .

[10]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.

[11]  James R. Wertz,et al.  Spacecraft attitude determination and control , 1978 .

[12]  Daniel E. Hastings,et al.  Distinguishing Attributes for the Operationally Responsive Space Paradigm , 2008 .

[13]  Shawn B. McCamish,et al.  Distributed autonomous control of multiple spacecraft during close proximity operations , 2007 .

[14]  John E. Prussing,et al.  OPTIMAL IMPULSIVE INTERCEPT WITH LOW-THRUST RENDEZVOUS RETURN , 1993 .

[15]  C. McInnes,et al.  Autonomous rendezvous using artificial potential function guidance , 1995 .

[16]  Pradeep K. Khosla,et al.  Real-time obstacle avoidance using harmonic potential functions , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[17]  Masayoshi Tomizuka,et al.  Smooth Robust Adaptive Sliding Mode Control of Manipulators With Guaranteed Transient Performance , 1996 .

[18]  Olivier de Weck,et al.  On-Orbit Assembly Strategies for Next-Generation Space Exploration , 2006 .

[19]  Stephen Kemble,et al.  Automated Rendezvous and Docking of Spacecraft , 2007 .

[20]  W. Reid,et al.  Riccati Differential Equations , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[21]  C. McInnes,et al.  On-orbit assembly using superquadric potential fields , 2008 .

[22]  Owen Brown,et al.  Fractionated Space Architectures: A Vision for Responsive Space , 2006 .

[23]  B. P. Zeigler,et al.  High autonomy systems: concepts and models , 1990, Proceedings [1990]. AI, Simulation and Planning in High Autonomy Systems.

[24]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[25]  Tull,et al.  XSS-10 Micro-Satellite Flight Demonstration Program , 2003 .

[26]  Rajesh Rajamani,et al.  Vehicle dynamics and control , 2005 .

[27]  Nicholas S. Martinson Obstacle avoidance guidance and control for autonomous satellites , 2009 .

[28]  Colin Robert McInnes Autonomous path planning for on-orbit servicing vehicles , 2000 .

[29]  Lydia E. Kavraki,et al.  PROBABILISTIC OPTIMIZATION APPLIED TO SPACECRAFT RENDEZVOUS AND DOCKING , 2003 .

[30]  Peter H. Zipfel,et al.  Modeling and Simulation of Aerospace Vehicle Dynamics , 2001 .

[31]  Daniel E. Koditschek,et al.  Exact robot navigation by means of potential functions: Some topological considerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[32]  James S. Albus,et al.  Autonomy levels for unmanned systems (ALFUS) framework: an update , 2005, SPIE Defense + Commercial Sensing.

[33]  Hari B. Hablani,et al.  Guidance and Relative Navigation for Autonomous Rendezvous in a Circular Orbit , 2002 .

[34]  Louis J. Lanzerotti Assessment of options for extending the life of the Hubble Space Telescope: final report , 2005 .

[35]  S. Liao,et al.  Beyond Perturbation: Introduction to the Homotopy Analysis Method , 2003 .

[36]  Shuzhi Sam Ge,et al.  Dynamic Motion Planning for Mobile Robots Using Potential Field Method , 2002, Auton. Robots.

[37]  Malcolm D. Shuster Survey of attitude representations , 1993 .

[38]  Jacob Engwerda,et al.  LQ Dynamic Optimization and Differential Games , 2005 .

[39]  Toru Kasai,et al.  Result of Autonomous Rendezvous Docking Experiment of Engineering Test Satellite-VII , 2001 .

[40]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[41]  Jan Rosell,et al.  Path planning using Harmonic Functions and Probabilistic Cell Decomposition , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[42]  David K. Geller,et al.  Navigating the Road to Autonomous Orbital Rendezvous , 2007 .

[43]  Håkan Hedberg The Swedish space corporation , 1991 .

[44]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[45]  Sam Siewert,et al.  A System Architecture to Advance Small Satellite Mission Operations Autonomy , 1995 .

[46]  Lydia E. Kavraki,et al.  Guided Expansive Spaces Trees: a search strategy for motion- and cost-constrained state spaces , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[47]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[48]  Warren E. Dixon,et al.  Nonlinear Control of Engineering Systems , 2002 .

[49]  Dave Lavery Perspectives future space on robotics , 1994 .

[50]  Arthur K. Cebrowski,et al.  Operationally Responsive Space: A New Defense Business Model , 2005, The US Army War College Quarterly: Parameters.

[51]  Brett R. Fajen,et al.  Visual navigation and obstacle avoidance using a steering potential function , 2006, Robotics Auton. Syst..

[52]  Jean Pierre Marec,et al.  Optimal Space Trajectories , 1979 .

[53]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[54]  Bong Wie,et al.  Space Vehicle Dynamics and Control , 1998 .

[55]  K. Yamanaka,et al.  New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit , 2002 .

[56]  J. Kuipers Quaternions and Rotation Sequences , 1998 .

[57]  Veysel Gazi,et al.  Swarm aggregations using artificial potentials and sliding mode control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[58]  Gloria J. Wiens,et al.  A new method of guidance control for autonomous rendezvous in a cluttered space environment , 2007 .

[59]  P. Hughes Spacecraft Attitude Dynamics , 1986 .

[60]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[61]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[62]  I. Michael Ross,et al.  Towards Real-Time Computation of Optimal Controls for Nonlinear Systems , 2002 .

[63]  George A. Boyarko Spacecraft Guidance Strategies for Proximity Maneuvering and Close Approach with a Tumbling Object , 2010 .

[64]  Andrew R Tatsch,et al.  Artificial potential function guidance for autonomous in-space operations , 2006 .

[65]  MH Mabrouk,et al.  Solving the potential field local minimum problem using internal agent states , 2008, Robotics Auton. Syst..

[66]  James S. Albus,et al.  Toward a Generic Model for Autonomy Levels for Unmanned Systems (ALFUS) , 2003 .

[67]  Robert M. Sanner,et al.  Variational Technique for Spacecraft Trajectory Planning , 2010 .

[68]  Panos J. Antsaklis,et al.  Towards intelligent autonomous control systems: Architecture and fundamental issues , 1989, J. Intell. Robotic Syst..

[69]  Michael E. Polites,et al.  An Assessment of the Technology of Automated Rendezvous and Capture in Space , 1998 .

[70]  Haim Weiss,et al.  Quarternion feedback regulator for spacecraft eigenaxis rotations , 1989 .

[71]  Kei-ichi Yamanaka Rendezvous Strategy of the Japanese Logistics Support Vehicle to the International Space Station , 1997 .

[72]  T. S. Cssi Kelso,et al.  Analysis of the Iridium 33 Cosmos 2251 Collision , 2009 .

[73]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[74]  Mohsen Razzaghi,et al.  Solution of the matrix Riccati equation in optimal control , 1978, Inf. Sci..

[75]  Bruce T Clough,et al.  Metrics, Schmetrics! How The Heck Do You Determine A UAV's Autonomy Anyway , 2002 .

[76]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[77]  Dario Izzo,et al.  Autonomous and Distributed Motion Planning for Satellite Swarm , 2007 .

[78]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[79]  T. Weismuller,et al.  GN&C Technology Demonstrated by the Orbital Express Autonomous Rendezvous and Capture Sensor System , 2006 .

[80]  Geoffrey Todd Huntington,et al.  Advancement and analysis of Gauss pseudospectral transcription for optimal control problems , 2007 .

[81]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[82]  R. Bellman Stability theory of differential equations , 1953 .

[83]  R. Sedwick,et al.  High-Fidelity Linearized J Model for Satellite Formation Flight , 2002 .