Directionally selective complex cells and the computation of motion energy in cat visual cortex

[1]  Michael S. Landy,et al.  Nonlinear Model of Neural Responses in Cat Visual Cortex , 1991 .

[2]  Michael J. Korenberg,et al.  Cortical Computation Of Motion Energy- Location Of The Squarer , 1990, [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[3]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[4]  R A Andersen,et al.  Hierarchical processing of motion in the visual cortex of monkey. , 1990, Cold Spring Harbor symposia on quantitative biology.

[5]  L. Palmer,et al.  Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat , 1989, Vision Research.

[6]  D. G. Albrecht,et al.  Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function , 1989, Vision Research.

[7]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[8]  M. C. Citron,et al.  Linear and nonlinear mechanisms of motion selectivity in single neurons of the cat's visual cortex , 1989, Conference Proceedings., IEEE International Conference on Systems, Man and Cybernetics.

[9]  J. Bergen,et al.  Nonlinear analysis of motion energy calculations in cat visual cortex , 1989, Proceedings of the Fifteenth Annual Northeast Bioengineering Conference.

[10]  Michael J. Korenberg,et al.  Identification of Intensive Nonlinearities in Cascade Models of Visual Cortex and its Relation to Cell Classification , 1989 .

[11]  Curtis L. Baker,et al.  Space-time separability of direction selectivity in cat striate cortex neurons , 1988, Vision Research.

[12]  A. L. Humphrey,et al.  Functionally distinct groups of X‐cells in the lateral geniculate nucleus of the cat , 1988, The Journal of comparative neurology.

[13]  R E Weller,et al.  Structural correlates of functionally distinct X‐cells in the lateral geniculate nucleus of the cat , 1988, The Journal of comparative neurology.

[14]  R C Emerson A linear model for symmetric receptive fields: implications for classification tests with flashed and moving images. , 1988, Spatial vision.

[15]  R. Shapley,et al.  Linear mechanisms of directional selectivity in simple cells of cat striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[17]  Klein,et al.  Nonlinear directionally selective subunits in complex cells of cat striate cortex. , 1987, Journal of neurophysiology.

[18]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[19]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. , 1987, Journal of neurophysiology.

[20]  S. McKee,et al.  Precise velocity discrimination despite random variations in temporal frequency and contrast , 1986, Vision Research.

[21]  D. Field,et al.  The structure and symmetry of simple-cell receptive-field profiles in the cat’s visual cortex , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[22]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[24]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[25]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[26]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[27]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[28]  M. C. Citron,et al.  White noise analysis of cortical directional selectivity in cat , 1983, Brain Research.

[29]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[30]  Andrew B. Watson,et al.  A look at motion in the frequency domain , 1983 .

[31]  M. C. Citron,et al.  Spatial and temporal receptive-field analysis of the cats geniculocortical pathway , 1981, Vision Research.

[32]  T. Poggio,et al.  Visual hyperacuity: spatiotemporal interpolation in human vision , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[33]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[34]  R. C. Emerson,et al.  Does image movement have a special nature for neurons in the cat's striate cortex? , 1981, Investigative ophthalmology & visual science.

[35]  R C Emerson,et al.  Spatial and temporal receptive-field analysis of the cat's geniculocortical pathway. , 1981, Vision research.

[36]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[37]  J. S. Lund,et al.  Cells of the striate cortex projecting to the Clare-Bishop area of the cat , 1978, Brain Research.

[38]  G. Henry Receptive field classes of cells in the striate cortex of the cat , 1977, Brain Research.

[39]  Emerson Rc,et al.  Simple striate neurons in the cat. I. Comparison of responses to moving and stationary stimuli. , 1977 .

[40]  R. C. Emerson,et al.  Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity. , 1977, Journal of neurophysiology.

[41]  G L Gerstein,et al.  Simple striate neurons in the cat. I. Comparison of responses to moving and stationary stimuli. , 1977, Journal of neurophysiology.

[42]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[43]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[44]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[45]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[46]  W Reichardt,et al.  Autocorrelation, a principle for evaluation of sensory information by the central nervous system , 1961 .

[47]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.