Robust Joint Position Feedback Control of Robot Manipulators

Most manipulator motion controllers require joint velocity feedback. Whenever joint velocities are not measurable, they are estimated from the joint positions. However, velocity estimates tend to be inaccurate under low-speed motion or low sensor resolution conditions. Moreover, velocity estimators may either be susceptible to model uncertainties or introduce additional dynamics (e.g., phase lag) to the control loop. Consequently, direct substitution of velocity estimates into the controller results in the deterioration of the control performance and robustness margin. Therefore, this paper proposes a robust position-feedback motion controller which gets rid of the problems of uncompensated dynamics and model uncertainties introduced by velocity estimators. Furthermore, a globally asymptotically stable system, which is robust with respective to model parameter variations, is guaranteed. Theoretical analysis and experimental verifications are carried out. The results demonstrate that the proposed controller is robust and outperforms the conventional computed torque plus proportional integral differential (PID) controller.

[1]  P. Khargonekar,et al.  H/sub infinity /-optimal control with state-feedback , 1988 .

[2]  Mehrzad Namvar A Class of Globally Convergent Velocity Observers for Robotic Manipulators , 2009, IEEE Transactions on Automatic Control.

[3]  John C. Doyle,et al.  Guaranteed margins for LQG regulators , 1978 .

[4]  Romeo Ortega,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[5]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[6]  P. Dorato,et al.  Survey of robust control for rigid robots , 1991, IEEE Control Systems.

[7]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[8]  G. Leitmann Guaranteed Asymptotic Stability for Some Linear Systems With Bounded Uncertainties , 1979 .

[9]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[10]  Hong Ren Wu,et al.  A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators , 1994, IEEE Trans. Autom. Control..

[11]  Peter X. Liu,et al.  PD output feedback control design for industrial robotic manipulators , 2011, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[12]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[13]  Jean-Jacques E. Slotine,et al.  Adaptive manipulator control: A case study , 1988 .

[14]  Javier Moreno-Valenzuela,et al.  Manipulator motion control in operational space using joint velocity inner loops , 2005, Autom..

[15]  Rob Dekkers,et al.  Control of Robot Manipulators in Joint Space , 2005 .

[16]  Juan I. Yuz,et al.  From classical to state-feedback-based controllers , 2003 .

[17]  Yifan Chen,et al.  A new and simple algorithm for sliding mode trajectory control of the robot arm , 1990 .

[18]  M. de Mathelin,et al.  Robust control of robot manipulators: A survey , 1999 .

[19]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[20]  M. Spong,et al.  On adaptive inverse dynamics control of rigid robots , 1990 .

[21]  C. C. Wit,et al.  Robot control via robust estimated state feedback , 1991 .

[22]  Wen-Shyong Yu,et al.  Decoupled variable structure control design for trajectory tracking on mechatronic arms , 2005, IEEE Trans. Control. Syst. Technol..

[23]  Marco A. Arteaga Robot control and parameter estimation with only joint position measurements , 2003, Autom..

[24]  Alexander S. Poznyak,et al.  Robot angular link velocity estimation in the presence of high-level mixed uncertainties , 2000 .

[25]  S. Ali A. Moosavian,et al.  Modified transpose Jacobian control of robotic systems , 2007, Autom..

[26]  Jairo Terra Moura,et al.  Frequency-shaped sliding modes: analysis and experiments , 1997, IEEE Trans. Control. Syst. Technol..

[27]  Mark W. Spong,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[28]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[29]  S. Fassois,et al.  Duhem modeling of friction-induced hysteresis , 2008, IEEE Control Systems.

[30]  S. Shankar Sastry,et al.  Adaptive Control of Mechanical Manipulators , 1987, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[31]  Z. Qu Robust control of a class of nonlinear uncertain systems , 1992 .

[32]  Henk Nijmeijer,et al.  Global regulation of robots using only position measurements , 1993 .

[33]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[34]  Y. P. Chen,et al.  A new controller design for manipulators using the theory of variable structure systems , 1988 .

[35]  K. Kreutz On manipulator control by exact linearization , 1989 .

[36]  Wen-Hong Zhu,et al.  A variable structure robot control algorithm with an observer , 1992, IEEE Trans. Robotics Autom..

[37]  Peter C. Müller,et al.  A simple improved velocity estimation for low-speed regions based on position measurements only , 2006, IEEE Transactions on Control Systems Technology.

[38]  P. Khargonekar,et al.  STATESPACE SOLUTIONS TO STANDARD 2 H AND H? CONTROL PROBLEMS , 1989 .

[39]  R. Kelly A Simple Set-point Robot Controller by Using Only Position Measurements* , 1993 .

[40]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[41]  S. Islam,et al.  Adaptive iterative learning control for robot manipulators : Experimental results , 2006 .

[42]  Carsten SchererMechanical,et al.  Mixed H 2 =h 1 Control , 1995 .

[43]  Wen-Hong Zhu,et al.  Velocity Estimation by Using Position and Acceleration Sensors , 2007, IEEE Transactions on Industrial Electronics.

[44]  Soo Jeon,et al.  Kinematic Kalman Filter (KKF) for Robot End-Effector Sensing , 2009 .

[45]  M. Spong On the robust control of robot manipulators , 1992 .

[46]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[47]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[48]  Roberto Horowitz,et al.  Repetitive and adaptive control of robot manipulators with velocity estimation , 1997, IEEE Trans. Robotics Autom..

[49]  Steven Dubowsky,et al.  A Simplified Cartesian-Computed Torque Controller for Highly Geared Systems and Its Application to an Experimental Climbing Robot , 2000 .

[50]  Chian-Song Chiu,et al.  Robust adaptive motion/force tracking control design for uncertain constrained robot manipulators , 2004, Autom..