How Visual Cortex Recognizes Objects: The Tale of the Standard Model

A host of experimental data has been accumulating on the properties and mechanisms of object recognition in cortex. We review the main findings, and summarize them using a quantitative, biologically plausible, Standard Model. The model is a tool to interpret and understand the available data, and generate questions and predictions for new experiments.

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[3]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[4]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[5]  M. Potter Meaning in visual search. , 1975, Science.

[6]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[7]  H. Intraub Rapid conceptual identification of sequentially presented pictures. , 1981 .

[8]  B. Tversky,et al.  Journal of Experimental Psychology : General VOL . 113 , No . 2 JUNE 1984 Objects , Parts , and Categories , 2005 .

[9]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Stephen M. Kosslyn,et al.  Pictures and names: Making the connection , 1984, Cognitive Psychology.

[11]  H. Brownell,et al.  Category differentiation in object recognition: typicality constraints on the basic category advantage. , 1985, Journal of experimental psychology. Learning, memory, and cognition.

[12]  R. Desimone,et al.  Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. , 1987, Journal of neurophysiology.

[13]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[14]  T. Poggio A theory of how the brain might work. , 1990, Cold Spring Harbor symposia on quantitative biology.

[15]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  R. Desimone Face-Selective Cells in the Temporal Cortex of Monkeys , 1991, Journal of Cognitive Neuroscience.

[17]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[18]  D I Perrett,et al.  Organization and functions of cells responsive to faces in the temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[20]  H H Bülthoff,et al.  Psychophysical support for a two-dimensional view interpolation theory of object recognition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[21]  David I. Perrett,et al.  Neurophysiology of shape processing , 1993, Image Vis. Comput..

[22]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[23]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[24]  N. Logothetis,et al.  View-dependent object recognition by monkeys , 1994, Current Biology.

[25]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[26]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[27]  T Poggio,et al.  View-based models of 3D object recognition: invariance to imaging transformations. , 1995, Cerebral cortex.

[28]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Keiji Tanaka,et al.  Optical Imaging of Functional Organization in the Monkey Inferotemporal Cortex , 1996, Science.

[30]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[31]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[32]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[33]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[34]  M. Tarr,et al.  Becoming a “Greeble” Expert: Exploring Mechanisms for Face Recognition , 1997, Vision Research.

[35]  Keiji Tanaka Mechanisms of visual object recognition: monkey and human studies , 1997, Current Opinion in Neurobiology.

[36]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[37]  G. Orban,et al.  Responses of macaque inferior temporal neurons to overlapping shapes. , 1997, Cerebral cortex.

[38]  Keiji Tanaka,et al.  Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. , 1998, Journal of neurophysiology.

[39]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[40]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[41]  Heinrich H Bülthoff,et al.  Image-based object recognition in man, monkey and machine , 1998, Cognition.

[42]  T. Poggio,et al.  Are Cortical Models Really Bound by the “Binding Problem”? , 1999, Neuron.

[43]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[44]  Matthew Turk,et al.  A Morphable Model For The Synthesis Of 3D Faces , 1999, SIGGRAPH.

[45]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[46]  R. Vogels Categorization of complex visual images by rhesus monkeys. Part 1: behavioural study , 1999, The European journal of neuroscience.

[47]  R. Vogels Categorization of complex visual images by rhesus monkeys. Part 2: single‐cell study , 1999, The European journal of neuroscience.

[48]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[49]  Tomaso Poggio,et al.  A Note on Object Class Representation and Categorical Perception , 1999 .

[50]  J. Maunsell,et al.  Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing , 2000, Nature Neuroscience.

[51]  Tomaso Poggio,et al.  The Individual is Nothing, the Class Everything: Psychophysics and Modeling of Recognition in Obect Classes , 2000 .

[52]  J. Hegdé,et al.  Selectivity for Complex Shapes in Primate Visual Area V2 , 2000, The Journal of Neuroscience.

[53]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[54]  E. Miller,et al.  THE PREFRONTAL CORTEX AND COGNITIVE CONTROL , 2000 .

[55]  I. Gauthier,et al.  Expertise for cars and birds recruits brain areas involved in face recognition , 2000, Nature Neuroscience.

[56]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[57]  Edmund T. Rolls,et al.  A Model of Invariant Object Recognition in the Visual System: Learning Rules, Activation Functions, Lateral Inhibition, and Information-Based Performance Measures , 2000, Neural Computation.

[58]  A. O'Toole,et al.  Prototype-referenced shape encoding revealed by high-level aftereffects , 2001, Nature Neuroscience.

[59]  N. Kanwisher,et al.  A Cortical Area Selective for Visual Processing of the Human Body , 2001, Science.

[60]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[61]  R. Vogels,et al.  Inferotemporal neurons represent low-dimensional configurations of parameterized shapes , 2001, Nature Neuroscience.

[62]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[63]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[64]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[65]  Y. Yamane,et al.  Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns , 2001, Nature Neuroscience.

[66]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[67]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[68]  J. K. Hietanen,et al.  The effects of lighting conditions on responses of cells selective for face views in the macaque temporal cortex , 2004, Experimental Brain Research.