Tuning characteristics of low-frequency EEG to positions and velocities in visuomotor and oculomotor tracking tasks

[1]  Alexandra Battaglia-Mayer,et al.  A Brief History of the Encoding of Hand Position by the Cerebral Cortex: Implications for Motor Control and Cognition , 2019, Cerebral cortex.

[2]  Andreea Ioana Sburlea,et al.  A Comparison of ocular Artifact removal Methods for Block Design based Electroencephalography Experiments , 2017, GBCIC.

[3]  Aleksander Sobolewski,et al.  Action Monitoring Cortical Activity Coupled to Submovements , 2017, eNeuro.

[4]  Gernot R Müller-Putz,et al.  Upper limb movements can be decoded from the time-domain of low-frequency EEG , 2017, PloS one.

[5]  A. P. Vinod,et al.  Noninvasive Brain-Computer Interface: Decoding Arm Movement Kinematics and Motor Control , 2016, IEEE Systems, Man, and Cybernetics Magazine.

[6]  Carolyn Jeane Perry,et al.  An Eye in the Palm of Your Hand: Alterations in Visual Processing Near the Hand, a Mini-Review , 2016, Front. Comput. Neurosci..

[7]  A. Haith,et al.  Independence of Movement Preparation and Movement Initiation , 2016, The Journal of Neuroscience.

[8]  Seong-Whan Lee,et al.  Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals , 2015, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[9]  Gernot R. Müller-Putz,et al.  Using a Noninvasive Decoding Method to Classify Rhythmic Movement Imaginations of the Arm in Two Planes , 2015, IEEE Transactions on Biomedical Engineering.

[10]  Klaus-Robert Müller,et al.  Covariance shrinkage for autocorrelated data , 2014, NIPS.

[11]  Stefan Haufe,et al.  On the interpretation of weight vectors of linear models in multivariate neuroimaging , 2014, NeuroImage.

[12]  N. Birbaumer,et al.  On the Usage of Linear Regression Models to Reconstruct Limb Kinematics from Low Frequency EEG Signals , 2013, PloS one.

[13]  Christoph M. Michel,et al.  Towards the utilization of EEG as a brain imaging tool , 2012, NeuroImage.

[14]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[15]  Emmanuel Maby,et al.  Inferring hand movement kinematics from MEG, EEG and intracranial EEG: From brain-machine interfaces to motor rehabilitation Décoder la cinématique d'un mouvement de la main à partir d'enregistrements MEG et EEG: des interfaces cerveau-machine à la réhabilitation motrice , 2011 .

[16]  D. Louis Collins,et al.  Unbiased average age-appropriate atlases for pediatric studies , 2011, NeuroImage.

[17]  Victor Vianu,et al.  Invited articles section foreword , 2010, JACM.

[18]  Z. Gu,et al.  Decoding hand movement velocity from electroencephalogram signals during a drawing task , 2010, Biomedical engineering online.

[19]  Alfonso Caramazza,et al.  Tuning Curves for Movement Direction in the Human Visuomotor System , 2010, The Journal of Neuroscience.

[20]  Théodore Papadopoulo,et al.  OpenMEEG: opensource software for quasistatic bioelectromagnetics , 2010, Biomedical engineering online.

[21]  Flavia Filimon Human Cortical Control of Hand Movements: Parietofrontal Networks for Reaching, Grasping, and Pointing , 2010, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[22]  Trent J. Bradberry,et al.  Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals , 2010, The Journal of Neuroscience.

[23]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[24]  Jonathan D. Nelson,et al.  Multiple Parietal Reach Regions in Humans: Cortical Representations for Visual and Proprioceptive Feedback during On-Line Reaching , 2009, The Journal of Neuroscience.

[25]  C. Braun,et al.  Hand Movement Direction Decoded from MEG and EEG , 2008, The Journal of Neuroscience.

[26]  Andreas Schulze-Bonhage,et al.  Prediction of arm movement trajectories from ECoG-recordings in humans , 2008, Journal of Neuroscience Methods.

[27]  Jonathan D. Nelson,et al.  Human cortical representations for reaching: Mirror neurons for execution, observation, and imagery , 2007, NeuroImage.

[28]  J. Wolpaw,et al.  Decoding two-dimensional movement trajectories using electrocorticographic signals in humans , 2007, Journal of neural engineering.

[29]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[30]  G. Pfurtscheller,et al.  A fully automated correction method of EOG artifacts in EEG recordings , 2007, Clinical Neurophysiology.

[31]  Jon A. Mukand,et al.  Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.

[32]  Kenneth F. Valyear,et al.  Human parietal cortex in action , 2006, Current Opinion in Neurobiology.

[33]  Lucas C. Parra,et al.  Recipes for the linear analysis of EEG , 2005, NeuroImage.

[34]  R. Johansson,et al.  Eye–Hand Coordination during Learning of a Novel Visuomotor Task , 2005, The Journal of Neuroscience.

[35]  Olivier D. Faugeras,et al.  A common formalism for the Integral formulations of the forward EEG problem , 2005, IEEE Transactions on Medical Imaging.

[36]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[37]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[38]  R. Krauzlis Recasting the smooth pursuit eye movement system. , 2004, Journal of neurophysiology.

[39]  C. Mehring,et al.  Inference of hand movements from local field potentials in monkey motor cortex , 2003, Nature Neuroscience.

[40]  David M. Santucci,et al.  Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates , 2003, PLoS biology.

[41]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[42]  Glenn F. Wilson,et al.  An Analysis of Mental Workload in Pilots During Flight Using Multiple Psychophysiological Measures , 2002 .

[43]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[44]  Jerald D. Kralik,et al.  Real-time prediction of hand trajectory by ensembles of cortical neurons in primates , 2000, Nature.

[45]  Scott T. Grafton,et al.  Forward modeling allows feedback control for fast reaching movements , 2000, Trends in Cognitive Sciences.

[46]  Y. Benjamini,et al.  Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics , 1999 .

[47]  Daniel M. Wolpert,et al.  Forward Models for Physiological Motor Control , 1996, Neural Networks.

[48]  S. D. Jong SIMPLS: an alternative approach to partial least squares regression , 1993 .

[49]  M. Shirosaki Another proof of the defect relation for moving targets , 1991 .

[50]  R Caminiti,et al.  Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  H. Collewijn,et al.  Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds. , 1984, The Journal of physiology.

[52]  A. P. Georgopoulos,et al.  Cortical mechanisms related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex , 1983, Experimental Brain Research.

[53]  A P Georgopoulos,et al.  On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  L. Paninski,et al.  Spatiotemporal tuning of motor cortical neurons for hand position and velocity. , 2004, Journal of neurophysiology.

[55]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[56]  J. Veltman,et al.  Physiological workload reactions to increasing levels of task difficulty. , 1998, Ergonomics.