Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities

New technologies have enabled the investigation of biology and human health at an unprecedented scale and in multiple dimensions. These dimensions include myriad properties describing genome, epigenome, transcriptome, microbiome, phenotype, and lifestyle. No single data type, however, can capture the complexity of all the factors relevant to understanding a phenomenon such as a disease. Integrative methods that combine data from multiple technologies have thus emerged as critical statistical and computational approaches. The key challenge in developing such approaches is the identification of effective models to provide a comprehensive and relevant systems view. An ideal method can answer a biological or medical question, identifying important features and predicting outcomes, by harnessing heterogeneous data across several dimensions of biological variation. In this Review, we describe the principles of data integration and discuss current methods and available implementations. We provide examples of successful data integration in biology and medicine. Finally, we discuss current challenges in biomedical integrative methods and our perspective on the future development of the field.

[1]  Jianying Hu,et al.  Label Propagation Prediction of Drug-Drug Interactions Based on Clinical Side Effects , 2015, Scientific Reports.

[2]  Wei Vivian Li,et al.  An accurate and robust imputation method scImpute for single-cell RNA-seq data , 2018, Nature Communications.

[3]  A. Frigessi,et al.  Principles and methods of integrative genomic analyses in cancer , 2014, Nature Reviews Cancer.

[4]  A. Tanay,et al.  Single-cell epigenomics: techniques and emerging applications , 2015, Nature Reviews Genetics.

[5]  Andrew E. Teschendorff,et al.  Epigenome-based cancer risk prediction: rationale, opportunities and challenges , 2018, Nature Reviews Clinical Oncology.

[6]  David Haussler,et al.  Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM , 2010, Bioinform..

[7]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[8]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[9]  Roy Kishony,et al.  Drug interactions and the evolution of antibiotic resistance , 2009, Nature Reviews Microbiology.

[10]  Jian Peng,et al.  Network-assisted target identification for haploinsufficiency and homozygous profiling screens , 2017, PLoS Comput. Biol..

[11]  Juan M. Vaquerizas,et al.  A census of human transcription factors: function, expression and evolution , 2009, Nature Reviews Genetics.

[12]  Yung-Yu Chuang,et al.  Affinity aggregation for spectral clustering , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Marinka Zitnik,et al.  A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family , 2017, Nature Communications.

[14]  Ping Zhang,et al.  Exploring the Relationship Between Drug Side-Effects and Therapeutic Indications , 2013, AMIA.

[15]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[16]  Mehmet Koyutürk,et al.  Network biology methods integrating biological data for translational science , 2012, Briefings Bioinform..

[17]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[18]  D. Weitz,et al.  Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state , 2015, Nature Biotechnology.

[19]  Claire D. McWhite,et al.  Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes , 2017, Molecular systems biology.

[20]  Shraddha Pai,et al.  Patient Similarity Networks for Precision Medicine. , 2018, Journal of molecular biology.

[21]  Lu Wen,et al.  Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas , 2016, Cell Research.

[22]  Natasa Przulj,et al.  Integration of molecular network data reconstructs Gene Ontology , 2014, Bioinform..

[23]  Jae Yong Ryu,et al.  Deep learning improves prediction of drug–drug and drug–food interactions , 2018, Proceedings of the National Academy of Sciences.

[24]  Gilberto Alves,et al.  Elucidation of the Impact of P-glycoprotein and Breast Cancer Resistance Protein on the Brain Distribution of Catechol-O-Methyltransferase Inhibitors , 2017, Drug Metabolism and Disposition.

[25]  Ilan Gronau,et al.  Inference of natural selection from interspersed genomic elements based on polymorphism and divergence. , 2011, Molecular biology and evolution.

[26]  Reza Safdari,et al.  Computational prediction of drug-drug interactions based on drugs functional similarities , 2017, J. Biomed. Informatics.

[27]  Andrew T Chan,et al.  Trends in Prescription Drug Use Among Adults in the United States From 1999-2012. , 2015, JAMA.

[28]  M. Vermeulen,et al.  DNA methylation: old dog, new tricks? , 2014, Nature Structural &Molecular Biology.

[29]  Marinka Zitnik,et al.  Collective Pairwise Classification for Multi-Way Analysis of Disease and Drug Data , 2016, PSB.

[30]  N. Jayaram,et al.  Evaluating tools for transcription factor binding site prediction , 2016, BMC Bioinformatics.

[31]  Aleix Prat Aparicio Comprehensive molecular portraits of human breast tumours , 2012 .

[32]  Zhiyong Lu,et al.  Pathway-based drug repositioning using causal inference , 2013, BMC Bioinformatics.

[33]  E. Shapiro,et al.  Single-cell sequencing-based technologies will revolutionize whole-organism science , 2013, Nature Reviews Genetics.

[34]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[35]  F. Markowetz,et al.  The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.

[36]  Jie Tan,et al.  Unsupervised Extraction of Stable Expression Signatures from Public Compendia with an Ensemble of Neural Networks. , 2017, Cell systems.

[37]  N. Eriksson,et al.  GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person , 2016, Nature Communications.

[38]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[39]  T. Ideker,et al.  A gene ontology inferred from molecular networks , 2012, Nature Biotechnology.

[40]  F. van Roy,et al.  A flexible integrative approach based on random forest improves prediction of transcription factor binding sites , 2012, Nucleic acids research.

[41]  S. Lewis,et al.  Uberon, an integrative multi-species anatomy ontology , 2012, Genome Biology.

[42]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[43]  Fan Yang,et al.  Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data. , 2013, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[44]  Nitesh V. Chawla,et al.  A Survey of Current Integrative Network Algorithms for Systems Biology , 2013 .

[45]  M. Elowitz,et al.  Challenges and emerging directions in single-cell analysis , 2017, Genome Biology.

[46]  Hans-Peter Kriegel,et al.  A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.

[47]  R. Sharan,et al.  Elucidation of Signaling Pathways from Large-Scale Phosphoproteomic Data Using Protein Interaction Networks. , 2016, Cell systems.

[48]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[49]  Ming Hu,et al.  Bayesian Inference of Spatial Organizations of Chromosomes , 2013, PLoS Comput. Biol..

[50]  J. Buxbaum,et al.  A SPECTRAL APPROACH INTEGRATING FUNCTIONAL GENOMIC ANNOTATIONS FOR CODING AND NONCODING VARIANTS , 2015, Nature Genetics.

[51]  Timothy J. Donohue,et al.  An Integrated Approach to Reconstructing Genome-Scale Transcriptional Regulatory Networks , 2015, PLoS Comput. Biol..

[52]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[53]  B. Strahl,et al.  Interpreting the language of histone and DNA modifications. , 2014, Biochimica et biophysica acta.

[54]  Allen D. Delaney,et al.  Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing , 2007, Nature Methods.

[55]  Marissa Fessenden,et al.  Metabolomics: Small molecules, single cells , 2016, Nature.

[56]  Vanessa M. Peterson,et al.  Multiplexed quantification of proteins and transcripts in single cells , 2017, Nature Biotechnology.

[57]  Steven J. M. Jones,et al.  Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. , 2017, Cancer cell.

[58]  Wolfgang Huber,et al.  A chemical–genetic interaction map of small molecules using high‐throughput imaging in cancer cells , 2015, Molecular systems biology.

[59]  Yoshua Bengio,et al.  A Closer Look at Memorization in Deep Networks , 2017, ICML.

[60]  A. Barabasi,et al.  Uncovering disease-disease relationships through the incomplete interactome , 2015, Science.

[61]  William Stafford Noble,et al.  PREDICTD PaRallel Epigenomics Data Imputation with Cloud-based Tensor Decomposition , 2018, Nature Communications.

[62]  William Stafford Noble,et al.  Integrative annotation of chromatin elements from ENCODE data , 2012, Nucleic acids research.

[63]  Dexter Hadley,et al.  Systematic integration of biomedical knowledge prioritizes drugs for repurposing , 2017, bioRxiv.

[64]  Attila Balint,et al.  Systematic analysis of complex genetic interactions , 2018, Science.

[65]  Zhaohui S. Qin,et al.  Base-resolution methylation patterns accurately predict transcription factor bindings in vivo , 2015, Nucleic acids research.

[66]  A. Bird,et al.  Genomic DNA methylation: the mark and its mediators. , 2006, Trends in biochemical sciences.

[67]  Harm van Bakel,et al.  TEAM: a tool for the integration of expression, and linkage and association maps , 2004, European Journal of Human Genetics.

[68]  Scott M. Lundberg,et al.  Explainable machine learning predictions to help anesthesiologists prevent hypoxemia during surgery , 2017, bioRxiv.

[69]  L. Baum,et al.  Growth transformations for functions on manifolds. , 1968 .

[70]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[71]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[72]  Zhiwei Cao,et al.  Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer , 2015, Nature Communications.

[73]  A. Siepel,et al.  Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data , 2016, Nature Genetics.

[74]  E. Snitkin,et al.  Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network , 2009, Genome Biology.

[75]  Yang Zhang,et al.  COFACTOR: improved protein function prediction by combining structure, sequence and protein–protein interaction information , 2017, Nucleic Acids Res..

[76]  George Hripcsak,et al.  Similarity-based modeling in large-scale prediction of drug-drug interactions , 2014, Nature Protocols.

[77]  Jure Leskovec,et al.  Modeling polypharmacy side effects with graph convolutional networks , 2018, bioRxiv.

[78]  Kevin R. Moon,et al.  Exploring single-cell data with deep multitasking neural networks , 2017, Nature Methods.

[79]  R. Sharan,et al.  INDI: a computational framework for inferring drug interactions and their associated recommendations , 2012, Molecular systems biology.

[80]  Lawrence Carin,et al.  Bayesian joint analysis of heterogeneous genomics data , 2014, Bioinform..

[81]  Siu-Ming Yiu,et al.  Predicting combinative drug pairs towards realistic screening via integrating heterogeneous features , 2017, BMC Bioinformatics.

[82]  Klaus Schulten,et al.  Effects of Cytosine Hydroxymethylation on Dna Strand Separation , 2022 .

[83]  Alexander J. Hartemink,et al.  MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics , 2017, Genome Biology.

[84]  Xiaohua Ma,et al.  Mechanisms of drug combinations: interaction and network perspectives , 2009, Nature Reviews Drug Discovery.

[85]  Nilanjan Chatterjee,et al.  Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies , 2013, Nature Genetics.

[86]  Travers Ching,et al.  Single-Cell Transcriptomics Bioinformatics and Computational Challenges , 2016, Front. Genet..

[87]  Xiang Zhang,et al.  Drug repositioning by integrating target information through a heterogeneous network model , 2014, Bioinform..

[88]  Bin Chen,et al.  Predicting drug target interactions using meta-path-based semantic network analysis , 2016, BMC Bioinformatics.

[89]  Gary C. Barker,et al.  An Integrative Approach to Computational Modelling of the Gene Regulatory Network Controlling Clostridium botulinum Type A1 Toxin Production , 2016, PLoS Comput. Biol..

[90]  T. Lappalainen,et al.  Associating cellular epigenetic models with human phenotypes , 2017, Nature Reviews Genetics.

[91]  R. Tagliaferri,et al.  Discovery of drug mode of action and drug repositioning from transcriptional responses , 2010, Proceedings of the National Academy of Sciences.

[92]  R. Sharan,et al.  PREDICT: a method for inferring novel drug indications with application to personalized medicine , 2011, Molecular systems biology.

[93]  Jens Nielsen,et al.  Network analyses identify liver‐specific targets for treating liver diseases , 2017, Molecular systems biology.

[94]  Victor Sourjik,et al.  Bacterial protein networks: properties and functions , 2015, Nature Reviews Microbiology.

[95]  John R. Garbe,et al.  A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa , 2018, PLoS Comput. Biol..

[96]  Marinka Zitnik,et al.  Jumping across biomedical contexts using compressive data fusion , 2016, Bioinform..

[97]  Alexander A. Morgan,et al.  Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression Data , 2011, Science Translational Medicine.

[98]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[99]  Bo Wang,et al.  Network enhancement as a general method to denoise weighted biological networks , 2018, Nature Communications.

[100]  M. Gerstein,et al.  A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data , 2003, Science.

[101]  Ping Zhang,et al.  Towards Drug Repositioning: A Unified Computational Framework for Integrating Multiple Aspects of Drug Similarity and Disease Similarity , 2014, AMIA.

[102]  Bruce Randall Donald,et al.  Algorithms in Structural Molecular Biology , 2011 .

[103]  Stephen R. Piccolo,et al.  Integrative analyses reveal signaling pathways underlying familial breast cancer susceptibility , 2016, Molecular systems biology.

[104]  P. Robinson,et al.  Walking the interactome for prioritization of candidate disease genes. , 2008, American journal of human genetics.

[105]  Yi Pan,et al.  Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm , 2016, Bioinform..

[106]  Bridget E. Begg,et al.  A Proteome-Scale Map of the Human Interactome Network , 2014, Cell.

[107]  A. Regev,et al.  Efficient Generation of Transcriptomic Profiles by Random Composite Measurements , 2017, Cell.

[108]  Mustafa Coskun,et al.  Drug Response Prediction as a Link Prediction Problem , 2017, Scientific Reports.

[109]  Jing Chen,et al.  ToppGene Suite for gene list enrichment analysis and candidate gene prioritization , 2009, Nucleic Acids Res..

[110]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[111]  Xiangxiang Zeng,et al.  Inferring MicroRNA-Disease Associations by Random Walk on a Heterogeneous Network with Multiple Data Sources , 2017, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[112]  Lise Getoor,et al.  A probabilistic approach for collective similarity-based drug-drug interaction prediction , 2016, Bioinform..

[113]  Lawrence B. Holder,et al.  Machine learning for epigenetics and future medical applications , 2017, Epigenetics.

[114]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[115]  Petros Maragos,et al.  Cross-Modal Integration for Performance Improving in Multimedia: A Review , 2008, Multimodal Processing and Interaction.

[116]  Ivan G. Costa,et al.  Detection of active transcription factor binding sites with the combination of DNase hypersensitivity and histone modifications , 2014, Bioinform..

[117]  Rob Knight,et al.  Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania , 2017, Science.

[118]  Florian Markowetz,et al.  Patient-Specific Data Fusion Defines Prognostic Cancer Subtypes , 2011, PLoS Comput. Biol..

[119]  C. Ponting,et al.  G&T-seq: parallel sequencing of single-cell genomes and transcriptomes , 2015, Nature Methods.

[120]  Bassem A. Hassan,et al.  Gene prioritization through genomic data fusion , 2006, Nature Biotechnology.

[121]  R. F. Hashimoto,et al.  NERI: network-medicine based integrative approach for disease gene prioritization by relative importance , 2015, BMC Bioinformatics.

[122]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[123]  Yanli Wang,et al.  Predicting drug–drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge , 2017, Journal of Cheminformatics.

[124]  Jason Weston,et al.  Learning Gene Functional Classifications from Multiple Data Types , 2002, J. Comput. Biol..

[125]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[126]  M. Ritchie,et al.  Methods of integrating data to uncover genotype–phenotype interactions , 2015, Nature Reviews Genetics.

[127]  Jacques van Helden,et al.  RSAT: regulatory sequence analysis tools , 2008, Nucleic Acids Res..

[128]  A. Barabasi,et al.  Network-based in silico drug efficacy screening , 2016, Nature Communications.

[129]  Dina Demner-Fushman,et al.  Extracting drug indication information from structured product labels using natural language processing , 2013, J. Am. Medical Informatics Assoc..

[130]  Marc A. Martí-Renom,et al.  Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors , 2017, PLoS Comput. Biol..

[131]  Kevin R. Moon,et al.  MAGIC: A diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data , 2017, bioRxiv.

[132]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[133]  Daniel Quang,et al.  FactorNet: a deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data , 2017, bioRxiv.

[134]  Konrad J. Karczewski,et al.  Integrative omics for health and disease , 2018, Nature Reviews Genetics.

[135]  Qing Jun Wang,et al.  A strategy for dissecting the architectures of native macromolecular assemblies , 2015, Nature Methods.

[136]  Khader Shameer,et al.  In silico methods for drug repurposing and pharmacology , 2016, Wiley interdisciplinary reviews. Systems biology and medicine.

[137]  Yves Moreau,et al.  pBRIT: gene prioritization by correlating functional and phenotypic annotations through integrative data fusion , 2018, Bioinform..

[138]  Sandrine Dudoit,et al.  Normalizing single-cell RNA sequencing data: challenges and opportunities , 2017, Nature Methods.

[139]  Shanfeng Zhu,et al.  DeepText2Go: Improving large-scale protein function prediction with deep semantic text representation , 2017, 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[140]  LiShao,et al.  A co-module approach for elucidating drug–disease associations and revealing their molecular basis , 2012 .

[141]  Eli R. Zunder,et al.  Highly multiplexed simultaneous detection of RNAs and proteins in single cells , 2016, Nature Methods.

[142]  Tijana Milenkoviæ,et al.  Uncovering Biological Network Function via Graphlet Degree Signatures , 2008, Cancer informatics.

[143]  Rajarshi Guha,et al.  Synergy Maps: exploring compound combinations using network-based visualization , 2015, Journal of Cheminformatics.

[144]  Tossapon Boongoen,et al.  LCE: a link-based cluster ensemble method for improved gene expression data analysis , 2010, Bioinform..

[145]  A. Singh,et al.  Single Cell Protein Analysis , 2015, Methods in Molecular Biology.

[146]  Jean-Jack M Riethoven,et al.  Regulatory regions in DNA: promoters, enhancers, silencers, and insulators. , 2010, Methods in molecular biology.

[147]  David Z. D'Argenio,et al.  Prediction of human functional genetic networks from heterogeneous data using RVM-based ensemble learning , 2010, Bioinform..

[148]  British Ornithologists,et al.  Bulletin of the , 1999 .

[149]  Marinka Zitnik,et al.  Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins , 2016, Bioinform..

[150]  Daniel S. Himmelstein,et al.  Understanding multicellular function and disease with human tissue-specific networks , 2015, Nature Genetics.

[151]  William Stafford Noble,et al.  Segway 2.0: Gaussian mixture models and minibatch training , 2017, bioRxiv.

[152]  Nicholas Eriksson,et al.  Efficient Replication of over 180 Genetic Associations with Self-Reported Medical Data , 2011, PloS one.

[153]  Bo Wang,et al.  Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning , 2016, Nature Methods.

[154]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[155]  Damian Smedley,et al.  Improved exome prioritization of disease genes through cross-species phenotype comparison , 2014, Genome research.

[156]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[157]  Zoran Obradovic,et al.  Computational Drug Repositioning by Ranking and Integrating Multiple Data Sources , 2013, ECML/PKDD.

[158]  Morteza Mohammad Noori,et al.  Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features , 2014, PLoS Comput. Biol..

[159]  Xiaohua Ma,et al.  Mechanisms of drug combinations: interaction and network perspectives , 2009, Nature Reviews Drug Discovery.

[160]  Natasa Przulj,et al.  Integrative methods for analyzing big data in precision medicine , 2016, Proteomics.

[161]  Feng Liu,et al.  Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data , 2017, BMC Bioinformatics.

[162]  Je-Gun Joung,et al.  SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells , 2018, Genome research.

[163]  Mehmet Koyutürk,et al.  An Integrative -omics Approach to Identify Functional Sub-Networks in Human Colorectal Cancer , 2010, PLoS Comput. Biol..

[164]  Daniel E. Newburger,et al.  Diversity and Complexity in DNA Recognition by Transcription Factors , 2009, Science.

[165]  S. F. Begum,et al.  Meta Path Based Top-K Similarity Join In Heterogeneous Information Networks , 2016 .

[166]  Adam B. Olshen,et al.  Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis , 2009, Bioinform..

[167]  Natasa Przulj,et al.  Patient-Specific Data Fusion for Cancer Stratification and Personalised Treatment , 2016, PSB.

[168]  Zhi Hu,et al.  Integrated analysis of breast cancer cell lines reveals unique signaling pathways , 2009, Genome Biology.

[169]  Brian Raught,et al.  Learning the human chromatin network from all ENCODE ChIP-seq data , 2015, bioRxiv.

[170]  Hisashi Kashima,et al.  Tensor factorization using auxiliary information , 2011, Data Mining and Knowledge Discovery.

[171]  Xiangxue Wang An Integrative Multi-Network and Multi-Classifier Approach to Predict Genetic Interactions , 2015 .

[172]  Chuang Liu,et al.  Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference , 2012, PLoS Comput. Biol..

[173]  Mehmet Gönen,et al.  Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization , 2012, Bioinform..

[174]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[175]  C. Ponting,et al.  Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity , 2015, Nature Methods.

[176]  Sendhil Mullainathan,et al.  Does Machine Learning Automate Moral Hazard and Error? , 2017, The American economic review.

[177]  R. Tibshirani,et al.  A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.

[178]  Manu Setty,et al.  Inferring transcriptional and microRNA-mediated regulatory programs in glioblastoma , 2012, Molecular systems biology.

[179]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[180]  Jason A. Papin,et al.  Metabolic network analysis integrated with transcript verification for sequenced genomes , 2009, Nature Methods.

[181]  Ali A. Minai,et al.  Investigating the predictability of essential genes across distantly related organisms using an integrative approach , 2010, Nucleic acids research.

[182]  Stefan Posch,et al.  Learning from mistakes: Accurate prediction of cell type-specific transcription factor binding , 2017, bioRxiv.

[183]  Søren Brunak,et al.  Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics , 2014, Nature Methods.

[184]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[185]  Yang Xie,et al.  A community computational challenge to predict the activity of pairs of compounds Citation , 2015 .

[186]  O. Troyanskaya,et al.  Predicting effects of noncoding variants with deep learning–based sequence model , 2015, Nature Methods.

[187]  Casey S. Greene,et al.  Cross-platform normalization enables machine learning model training on microarray and RNA-seq data simultaneously , 2017, bioRxiv.

[188]  M. Newton,et al.  SCnorm: robust normalization of single-cell RNA-seq data , 2017, Nature Methods.

[189]  Blaž Zupan,et al.  Matrix factorization-based data fusion for drug-induced liver injury prediction , 2014 .

[190]  Christopher A. Penfold,et al.  Inferring orthologous gene regulatory networks using interspecies data fusion , 2015, Bioinform..

[191]  Fei Wang,et al.  Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders , 2018, IJCAI.

[192]  P. Bork,et al.  Systematic identification of proteins that elicit drug side effects , 2013, Molecular systems biology.

[193]  Zhuowen Tu,et al.  Similarity network fusion for aggregating data types on a genomic scale , 2014, Nature Methods.

[194]  Min Wu,et al.  A two-layer integration framework for protein complex detection , 2016, BMC Bioinformatics.

[195]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[196]  M. Gut,et al.  bigSCale: an analytical framework for big-scale single-cell data. , 2018, Genome research.

[197]  Bonnie Berger,et al.  Compact Integration of Multi-Network Topology for Functional Analysis of Genes. , 2016, Cell systems.

[198]  S. Beck,et al.  From profiles to function in epigenomics , 2016, Nature Reviews Genetics.

[199]  Michael Gribskov,et al.  Combining evidence using p-values: application to sequence homology searches , 1998, Bioinform..

[200]  Haifeng Li,et al.  Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation , 2011, PLoS Comput. Biol..

[201]  Pierre-Étienne Jacques,et al.  The International Human Epigenome Consortium Data Portal. , 2016, Cell systems.

[202]  Mercedes Pascual,et al.  The multilayer nature of ecological networks , 2015, Nature Ecology &Evolution.

[203]  William Stafford Noble,et al.  Unsupervised pattern discovery in human chromatin structure through genomic segmentation , 2012, Nature Methods.

[204]  Marinka Zitnik,et al.  Matrix Factorization-Based Data Fusion for Gene Function Prediction in Baker's Yeast and Slime Mold , 2013, Pacific Symposium on Biocomputing.

[205]  Michael M. Hoffman,et al.  Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome , 2018, Genome Biology.

[206]  Maxat Kulmanov,et al.  DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier , 2017, Bioinform..

[207]  W. Koh,et al.  Single-cell genome sequencing: current state of the science , 2016, Nature Reviews Genetics.

[208]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[209]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[210]  M. Schaub,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[211]  Tom Michoel,et al.  Integrative Multi-omics Module Network Inference with Lemon-Tree , 2014, PLoS Comput. Biol..

[212]  Marinka Zitnik,et al.  Survival regression by data fusion , 2014 .

[213]  Kresten Lindorff-Larsen,et al.  A combined computational and structural model of the full-length human prolactin receptor , 2016, Nature Communications.

[214]  Jure Leskovec,et al.  Predicting multicellular function through multi-layer tissue networks , 2017, Bioinform..

[215]  K. Aldape,et al.  Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. , 2005, Cancer research.

[216]  Manolis Kellis,et al.  Large-scale epigenome imputation improves data quality and disease variant enrichment , 2015, Nature Biotechnology.

[217]  Nataša Pržulj,et al.  Precision medicine d A promising, yet challenging road lies ahead , 2022 .

[218]  Mikhail Pachkov,et al.  Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting , 2013, Genome research.

[219]  Natasa Przulj,et al.  Fuse: multiple network alignment via data fusion , 2014, Bioinform..

[220]  Ron Shamir,et al.  Constructing module maps for integrated analysis of heterogeneous biological networks , 2014, Nucleic acids research.

[221]  Nello Cristianini,et al.  A statistical framework for genomic data fusion , 2004, Bioinform..

[222]  S. Henikoff,et al.  An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites , 2016, bioRxiv.

[223]  W. D. Laat,et al.  A Decade of 3c Technologies: Insights into Nuclear Organization References , 2022 .

[224]  Wei Wang,et al.  Predicting the Human Epigenome from DNA Motifs , 2014, Nature Methods.

[225]  E. Pierson,et al.  ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis , 2015, Genome Biology.

[226]  C. Ponting,et al.  Single-Cell Multiomics: Multiple Measurements from Single Cells , 2017, Trends in genetics : TIG.

[227]  A. Stark,et al.  Transcriptional enhancers: from properties to genome-wide predictions , 2014, Nature Reviews Genetics.

[228]  A. Goldenberg,et al.  Brain-Behavior Participant Similarity Networks Among Youth and Emerging Adults with Schizophrenia Spectrum, Autism Spectrum, or Bipolar Disorder and Matched Controls , 2018, Neuropsychopharmacology.

[229]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[230]  Scott M. Lundberg,et al.  ChromNet: Learning the human chromatin network from all ENCODE ChIP-seq data , 2016, Genome Biology.

[231]  Marinka Zitnik,et al.  NIMFA: A Python Library for Nonnegative Matrix Factorization , 2012, J. Mach. Learn. Res..

[232]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[233]  Shane J. Neph,et al.  A comparative encyclopedia of DNA elements in the mouse genome , 2014, Nature.

[234]  Hao Ding,et al.  Collaborative matrix factorization with multiple similarities for predicting drug-target interactions , 2013, KDD.

[235]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[236]  Yves Moreau,et al.  Candidate gene prioritization with Endeavour , 2016, Nucleic Acids Res..

[237]  Brian S. Roberts,et al.  CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins , 2015, Genome research.

[238]  A. Goldenberg,et al.  Intertumoral Heterogeneity within Medulloblastoma Subgroups. , 2017, Cancer cell.

[239]  P. Bork,et al.  Drug Target Identification Using Side-Effect Similarity , 2008, Science.

[240]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[241]  Hongfei Lin,et al.  Drug drug interaction extraction from biomedical literature using syntax convolutional neural network , 2016, Bioinform..

[242]  Andrew M. Gross,et al.  Network-based stratification of tumor mutations , 2013, Nature Methods.

[243]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[244]  Marinka Zitnik,et al.  Data Fusion by Matrix Factorization , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[245]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[246]  Suzanna Lewis,et al.  Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium , 2011, Briefings Bioinform..

[247]  Christine A. Orengo,et al.  Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster , 2017, PLoS Comput. Biol..

[248]  B. Zupan,et al.  Discovering disease-disease associations by fusing systems-level molecular data , 2013, Scientific Reports.

[249]  P. Sanseau,et al.  Systematic prediction of drug combinations based on clinical side-effects , 2014, Scientific Reports.

[250]  Eric Horvitz,et al.  Uncertain reasoning and forecasting , 1995 .

[251]  Philippe Besse,et al.  Sparse canonical methods for biological data integration: application to a cross-platform study , 2009, BMC Bioinformatics.

[252]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[253]  Ho-Ryun Chung,et al.  Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome , 2015, Genome Biology.

[254]  Albert Y. Zomaya,et al.  A Review of Ensemble Methods in Bioinformatics , 2010, Current Bioinformatics.

[255]  Jing Zhang,et al.  Prediction of Novel Drugs for Hepatocellular Carcinoma Based on Multi-Source Random Walk , 2017, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[256]  Shuqin Zhang,et al.  Drug-target interaction prediction by integrating multiview network data , 2017, Comput. Biol. Chem..

[257]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[259]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[260]  Shannon E. Ellis,et al.  Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder , 2016, Nature Communications.

[261]  T. Ideker,et al.  Siri of the Cell: What Biology Could Learn from the iPhone , 2014, Cell.

[262]  Jonas Paulsen,et al.  Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts , 2017, Genome Biology.

[263]  P. D’haeseleer What are DNA sequence motifs? , 2006, Nature Biotechnology.

[264]  Roded Sharan,et al.  Using deep learning to model the hierarchical structure and function of a cell , 2018, Nature Methods.

[265]  Jian Peng,et al.  A Network Integration Approach for Drug-Target Interaction Prediction and Computational Drug Repositioning from Heterogeneous Information , 2017, RECOMB 2017.

[266]  Elena Marchiori,et al.  Gaussian interaction profile kernels for predicting drug-target interaction , 2011, Bioinform..

[267]  Anna Goldenberg,et al.  Integration of DNA methylation & health scores identifies subtypes in myalgic encephalomyelitis/chronic fatigue syndrome. , 2018, Epigenomics.

[268]  Janez Konc,et al.  Binding site comparison for function prediction and pharmaceutical discovery. , 2014, Current opinion in structural biology.

[269]  Matthew A. Hibbs,et al.  Discovery of biological networks from diverse functional genomic data , 2005, Genome Biology.

[270]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[271]  Daniel W. A. Buchan,et al.  A large-scale evaluation of computational protein function prediction , 2013, Nature Methods.

[272]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[273]  Andrew E. Teschendorff,et al.  Statistical and integrative system-level analysis of DNA methylation data , 2017, Nature Reviews Genetics.

[274]  Su-In Lee,et al.  AIControl: replacing matched control experiments with machine learning improves ChIP-seq peak identification , 2018, bioRxiv.

[275]  Karen A. Ryall,et al.  Systems biology approaches for advancing the discovery of effective drug combinations , 2015, Journal of Cheminformatics.

[276]  Peer Bork,et al.  Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats , 2015, Cell systems.

[277]  Howard Y. Chang,et al.  HiChIP: efficient and sensitive analysis of protein-directed genome architecture , 2016, Nature Methods.

[278]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[279]  Ping Zhang,et al.  Exploring the associations between drug side-effects and therapeutic indications , 2014, J. Biomed. Informatics.

[280]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[281]  Z. Bar-Joseph,et al.  Using neural networks for reducing the dimensions of single-cell RNA-Seq data , 2017, Nucleic acids research.

[282]  B. Kuster,et al.  Mass-spectrometry-based draft of the human proteome , 2014, Nature.

[283]  Xiaoyan Zhu,et al.  Building Disease-Specific Drug-Protein Connectivity Maps from Molecular Interaction Networks and PubMed Abstracts , 2009, PLoS Comput. Biol..

[284]  William Stafford Noble,et al.  Unsupervised segmentation of continuous genomic data , 2007, Bioinform..

[285]  Jagdish Chandra Patra,et al.  Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network , 2010, Bioinform..

[286]  Saurabh Sinha,et al.  Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks , 2016, Bioinform..

[287]  C. Elkan,et al.  Unsupervised learning of multiple motifs in biopolymers using expectation maximization , 1995, Machine Learning.

[288]  Tijl De Bie,et al.  Kernel-based data fusion for gene prioritization , 2007, ISMB/ECCB.

[289]  Koji Tsuda,et al.  CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data , 2016, BMC Bioinformatics.

[290]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[291]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[292]  G. Crawford,et al.  DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. , 2010, Cold Spring Harbor protocols.

[293]  Jing Li,et al.  Drug Target Predictions Based on Heterogeneous Graph Inference , 2012, Pacific Symposium on Biocomputing.

[294]  Xing Chen,et al.  NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning , 2016, PLoS Comput. Biol..

[295]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[296]  Philip S. Yu,et al.  PathSim , 2011, Proc. VLDB Endow..

[297]  Shiwen Zhao,et al.  A co-module approach for elucidating drug-disease associations and revealing their molecular basis , 2012, Bioinform..

[298]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[299]  David P. Kreil,et al.  The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance , 2014, Nature Biotechnology.

[300]  Hans Clevers,et al.  What Is Your Conceptual Definition of "Cell Type" in the Context of a Mature Organism? , 2017, Cell systems.

[301]  Lei Huang,et al.  DrugComboRanker: drug combination discovery based on target network analysis , 2014, Bioinform..

[302]  David R. Kelley,et al.  Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks , 2015, bioRxiv.

[303]  T. D. Schneider,et al.  Use of the 'Perceptron' algorithm to distinguish translational initiation sites in E. coli. , 1982, Nucleic acids research.

[304]  L. Baum,et al.  An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process , 1972 .

[305]  Nathalie Villa-Vialaneix,et al.  Unsupervised multiple kernel learning for heterogeneous data integration , 2017, bioRxiv.

[306]  Luonan Chen,et al.  Network-based drug repositioning. , 2013, Molecular bioSystems.

[307]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.

[308]  S. Clark,et al.  Mining cancer methylomes: prospects and challenges. , 2014, Trends in genetics : TIG.

[309]  Jure Leskovec,et al.  Representation Learning on Graphs: Methods and Applications , 2017, IEEE Data Eng. Bull..

[310]  Gaelen T. Hess,et al.  Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions , 2017, Nature Biotechnology.

[311]  Adam P. Rosebrock,et al.  A global genetic interaction network maps a wiring diagram of cellular function , 2016, Science.

[312]  Jung-Hwan Yoon,et al.  Integrative analysis of genomic and epigenomic regulation of the transcriptome in liver cancer , 2017, Nature Communications.

[313]  Hyeon-Eui Kim,et al.  Deep mining heterogeneous networks of biomedical linked data to predict novel drug‐target associations , 2017, Bioinform..

[314]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[315]  O. Stegle,et al.  Single-cell epigenomics: Recording the past and predicting the future , 2017, Science.

[316]  Jacob F. Degner,et al.  Sequence and Chromatin Accessibility Data Accurate Inference of Transcription Factor Binding from Dna Material Supplemental Open Access , 2022 .

[317]  James T. Webber,et al.  Single-cell transcriptomic characterization of 20 organs and tissues from individual mice creates a Tabula Muris , 2017 .

[318]  A. Siepel,et al.  Probabilities of Fitness Consequences for Point Mutations Across the Human Genome , 2014, Nature Genetics.

[319]  Xiao Li,et al.  Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related Information , 2017, PLoS biology.

[320]  Nathan C. Sheffield,et al.  Multi-Omics of Single Cells: Strategies and Applications , 2016, Trends in biotechnology.

[321]  Erez Lieberman Aiden,et al.  De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture , 2017, Proceedings of the National Academy of Sciences.

[322]  M. Biggin,et al.  High-throughput SELEX determination of DNA sequences bound by transcription factors in vitro. , 2012, Methods in molecular biology.

[323]  Farida Zehraoui,et al.  Towards a piRNA prediction using multiple kernel fusion and support vector machine , 2014, Bioinform..

[324]  S. Loewe The problem of synergism and antagonism of combined drugs. , 1953, Arzneimittel-Forschung.

[325]  Marinka Zitnik,et al.  Gene network inference by fusing data from diverse distributions , 2015, Bioinform..

[326]  Lovelace J. Luquette,et al.  Comprehensive analysis of the chromatin landscape in Drosophila , 2010, Nature.

[327]  Yoshihiro Yamanishi,et al.  Supervised prediction of drug–target interactions using bipartite local models , 2009, Bioinform..

[328]  Yijia Zhang,et al.  An attention-based effective neural model for drug-drug interactions extraction , 2017, BMC Bioinformatics.

[329]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[330]  Zhiyong Lu,et al.  A survey of current trends in computational drug repositioning , 2016, Briefings Bioinform..

[331]  Wei Li,et al.  Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles , 2017, Artif. Intell. Medicine.

[332]  Stephen R Quake,et al.  Single-cell multimodal profiling reveals cellular epigenetic heterogeneity , 2016, Nature Methods.

[333]  Anna Goldenberg,et al.  Similarity Network Fusion: A Novel Application to Making Clinical Diagnoses. , 2018, Rheumatic diseases clinics of North America.

[334]  William Stafford Noble,et al.  Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression , 2014, bioRxiv.

[335]  Benjamin J. Raphael,et al.  Network propagation: a universal amplifier of genetic associations , 2017, Nature Reviews Genetics.

[336]  A. Tanay,et al.  Single cell Hi-C reveals cell-to-cell variability in chromosome structure , 2013, Nature.

[337]  Nataša Pržulj,et al.  Graphlet-based Characterization of Directed Networks , 2016, Scientific Reports.

[338]  A. Sandelin,et al.  Applied bioinformatics for the identification of regulatory elements , 2004, Nature Reviews Genetics.

[339]  Zhongming Zhao,et al.  Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. , 2014, Journal of the American Medical Informatics Association : JAMIA.

[340]  Marinka Zitnik,et al.  Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion , 2015, J. Comput. Biol..

[341]  J. Mixter Fast , 2012 .

[342]  D. Hinds,et al.  Identification of 15 genetic loci associated with risk of major depression in individuals of European descent , 2016, Nature Genetics.

[343]  David Warde-Farley,et al.  GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function , 2008, Genome Biology.

[344]  Huamin Zhang,et al.  Synergy evaluation by a pathway-pathway interaction network: a new way to predict drug combination. , 2016, Molecular bioSystems.

[345]  Mauricio Barahona,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[346]  Yoshihiro Yamanishi,et al.  Relating drug–protein interaction network with drug side effects , 2012, Bioinform..

[347]  Daniel S. Himmelstein,et al.  Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes , 2014, bioRxiv.

[348]  S. Nelson,et al.  Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning , 2008, Nature.

[349]  J. Scannell,et al.  Diagnosing the decline in pharmaceutical R&D efficiency , 2012, Nature Reviews Drug Discovery.

[350]  Carol Friedman,et al.  Drug-drug interaction through molecular structure similarity analysis , 2012, J. Am. Medical Informatics Assoc..

[351]  Elena K. Kandror,et al.  Single-cell topological RNA-Seq analysis reveals insights into cellular differentiation and development , 2017, Nature Biotechnology.

[352]  A. Chinnaiyan,et al.  The emergence of lncRNAs in cancer biology. , 2011, Cancer discovery.

[353]  A. Zwinderman,et al.  Statistical Applications in Genetics and Molecular Biology Quantifying the Association between Gene Expressions and DNA-Markers by Penalized Canonical Correlation Analysis , 2011 .

[354]  Samuel Kaski,et al.  Kernelized Bayesian Matrix Factorization , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[355]  Yu Zhang,et al.  Jointly characterizing epigenetic dynamics across multiple human cell types , 2016, Nucleic acids research.

[356]  Jure Leskovec,et al.  Higher-order organization of complex networks , 2016, Science.

[357]  O. Stegle,et al.  Single-Cell Genome-Wide Bisulfite Sequencing for Assessing Epigenetic Heterogeneity , 2014, Nature Methods.

[358]  G. R. Blakley Homogeneous nonnegative symmetric quadratic transformations , 1964 .

[359]  Percy Liang,et al.  Understanding Black-box Predictions via Influence Functions , 2017, ICML.

[360]  Morteza Mohammad Noori,et al.  gkmSVM: an R package for gapped-kmer SVM , 2016, Bioinform..

[361]  Marinka Zitnik,et al.  Gene Prioritization by Compressive Data Fusion and Chaining , 2015, PLoS Comput. Biol..

[362]  Benjamin J. Raphael,et al.  Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin , 2014, Cell.

[363]  Michael J. Keiser,et al.  Relating protein pharmacology by ligand chemistry , 2007, Nature Biotechnology.

[364]  B. Pugh,et al.  ChIP‐exo Method for Identifying Genomic Location of DNA‐Binding Proteins with Near‐Single‐Nucleotide Accuracy , 2012, Current protocols in molecular biology.

[365]  Bart De Moor,et al.  eXtasy: variant prioritization by genomic data fusion , 2013, Nature Methods.