PuzzleFlex: kinematic motion of chains with loose joints

This paper presents a method of computing free motions of a planar assembly of rigid bodies connected by loose joints. Joints are modeled using local distance constraints, which are then linearized with respect to configuration space velocities, yielding a linear programming formulation that allows analysis of systems with thousands of rigid bodies. Potential applications include analysis of collections of modular robots, structural stability perturbation analysis, tolerance analysis for mechanical systems, and formation control of mobile robots.

[1]  Mark Yim,et al.  Modular robot connector area of acceptance from configuration space obstacles , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2]  D. Stewart,et al.  Dynamics, Friction, And Complementarity Problems , 1995 .

[3]  Dinesh K. Pai,et al.  Multiresolution green's function methods for interactive simulation of large-scale elastostatic objects , 2003, TOGS.

[4]  Radhika Nagpal,et al.  Distributed construction by mobile robots with enhanced building blocks , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[5]  Micha Sharir,et al.  On the existence and synthesis of multifinger positive grips , 2015, Algorithmica.

[6]  Alexander Kennedy The kinematics of machinery , 1881 .

[7]  Jean-Claude Latombe,et al.  A General Framework for Assembly Planning: The Motion Space Approach , 1998, SCG '98.

[8]  Javier Alonso-Mora,et al.  Multi-robot formation control and object transport in dynamic environments via constrained optimization , 2017, Int. J. Robotics Res..

[9]  Devin Balkcom,et al.  Interlocking Block Assembly , 2018, WAFR.

[10]  Kris Hauser Semi-infinite Programming for Trajectory Optimization with Nonconvex Obstacles , 2018, WAFR.

[11]  M. Rubin Cosserat Theories: Shells, Rods and Points , 2000 .

[12]  Sungbok Kim Adjustable manipulability of closed-chain mechanisms through joint freezing and joint unactuation , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[13]  Radhika Nagpal,et al.  Programmable self-assembly in a thousand-robot swarm , 2014, Science.

[14]  Jorge Stolfi,et al.  Objects that cannot be taken apart with two hands , 1993, SCG '93.

[15]  Joel W. Burdick,et al.  Two-Finger Caging of Polygonal Objects Using Contact Space Search , 2015, IEEE Transactions on Robotics.

[16]  Andrew Blake,et al.  Caging 2D bodies by 1-parameter two-fingered gripping systems , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[17]  Muaz A. Niazi,et al.  Technical Problems With "Programmable self-assembly in a thousand-robot swarm" , 2014, ArXiv.

[18]  Miles Lubin,et al.  Forward-Mode Automatic Differentiation in Julia , 2016, ArXiv.

[19]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[20]  Bruno Siciliano,et al.  Global task space manipulability ellipsoids for multiple-arm systems , 1991, IEEE Trans. Robotics Autom..

[21]  Elisha Sacks,et al.  Robust free space construction for a polyhedron with planar motion , 2017, Comput. Aided Des..

[22]  Joel M. Esposito,et al.  Maintaining wireless connectivity constraints for swarms in the presence of obstacles , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[23]  Fred Rothganger,et al.  Capturing a Convex Object With Three Discs , 2007, IEEE Transactions on Robotics.

[24]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[25]  Antonio Bicchi,et al.  Manipulability of cooperating robots with unactuated joints and closed-chain mechanisms , 2000, IEEE Trans. Robotics Autom..

[26]  Alberto Rodriguez,et al.  From caging to grasping , 2011, Int. J. Robotics Res..

[27]  Dmitry Berenson,et al.  Manipulation of deformable objects without modeling and simulating deformation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Devin J. Balkcom,et al.  Computing Wrench Cones for Planar Rigid Body Contact Tasks , 2002, Int. J. Robotics Res..

[29]  Johannes J. Duistermaat,et al.  Taylor Expansion in Several Variables , 2010 .

[30]  Dinesh K. Pai,et al.  STRANDS: Interactive Simulation of Thin Solids using Cosserat Models , 2002, Comput. Graph. Forum.

[31]  Aaron Becker,et al.  Algorithms for shaping a particle swarm with a shared input by exploiting non-slip wall contacts , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[32]  A. Frank van der Stappen,et al.  Caging Polygons with Two and Three Fingers , 2008, Int. J. Robotics Res..

[33]  Kenneth W. Chase,et al.  A survey of research in the application of tolerance analysis to the design of mechanical assemblies , 1991 .

[34]  J. Trinkle,et al.  Dynamic Multi-Rigid-Body Systems with Concurrent Distributed Contacts: Theory and Examples , 2001 .

[35]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[36]  Franz Reuleaux,et al.  The Kinematics of Machinery , 2016, Nature.

[37]  Günter Rote,et al.  Straightening polygonal arcs and convexifying polygonal cycles , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[38]  Frank Chongwoo Park,et al.  Manipulability and singularity analysis of multiple robot systems: a geometric approach , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[39]  Spencer P. Magleby,et al.  Including Geometric Feature Variations in Tolerance Analysis of Mechanical Assemblies , 1996 .

[40]  Devin J. Balkcom,et al.  Interlocking structure assembly with voxels , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[41]  Jianguo Yang,et al.  Application of the Jacobian–torsor theory into error propagation analysis for machining processes , 2013 .

[42]  Neel Doshi,et al.  Self-assembly of a swarm of autonomous boats into floating structures , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[43]  Komei Fukuda,et al.  Double Description Method Revisited , 1995, Combinatorics and Computer Science.

[44]  M. Ani Hsieh,et al.  Decentralized controllers for shape generation with robotic swarms , 2008, Robotica.

[45]  Satoshi Makita,et al.  3D multifingered caging: Basic formulation and planning , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[46]  Luc Laperrière,et al.  Modeling Dispersions Affecting Pre-Defined Functional Requirements of Mechanical Assemblies Using Jacobian Transforms , 1999 .

[47]  Kwang-Jin Choi,et al.  Stable but responsive cloth , 2002, SIGGRAPH 2002.

[48]  Weiwei Wan,et al.  A survey of robotic caging and its applications , 2017, Adv. Robotics.