Continuous medial models in two-sample statistics of shape

In questions of statistical shape analysis, the foremost is how such shapes should be represented. The number of parameters required for a given accuracy and the types of deformation they can express directly influence the quality and type of statistical inferences one can make. One example is a medial model, which represents a solid object using a skeleton of a lower dimension and naturally expresses intuitive changes such as "bending", "twisting", and "thickening". In this dissertation I develop a new three-dimensional medial model that allows continuous interpolation of the medial surface and provides a map back and forth between the boundary and its medial axis. It is the first such model to support branching, allowing the representation of a much wider class of objects than previously possible using continuous medial methods. A measure defined on the medial surface then allows one to write integrals over the boundary and the object interior in medial coordinates, enabling the expression of important object properties in an object-relative coordinate system. I show how these properties can be used to optimize correspondence during model construction. This improved correspondence reduces variability due to how the model is parameterized which could potentially mask a true shape change effect. Finally, I develop a method for performing global and local hypothesis testing between two groups of shapes. This method is capable of handling the nonlinear spaces the shapes live in and is well defined even in the high-dimension, low-sample size case. It naturally reduces to several well-known statistical tests in the linear and univariate cases.

[1]  Benjamin B. Kimia,et al.  A formal classification of 3D medial axis points and their local geometry , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  M. Egan,et al.  Prefrontal neurons and the genetics of schizophrenia , 2001, Biological Psychiatry.

[3]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[4]  Andrew W. Moore,et al.  Dual-Tree Fast Gauss Transforms , 2005, NIPS.

[5]  L. Younes,et al.  Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[6]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  P. Hall,et al.  Permutation tests for equality of distributions in high‐dimensional settings , 2002 .

[8]  Christopher J. Taylor,et al.  Automatic construction of eigenshape models by direct optimization , 1998, Medical Image Anal..

[9]  Peter Lorenzen,et al.  Large deformation minimum mean squared error template estimation for computational anatomy , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[10]  P. Thomas Fletcher,et al.  Statistics of Shape via Principal Component Analysis on Lie Groups , 2003 .

[11]  Miriah D. Meyer,et al.  Entropy-Based Particle Systems for Shape Correspondence , 2006 .

[12]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[13]  Ulrich Reif,et al.  Curvature integrability of subdivision surfaces , 2001, Adv. Comput. Math..

[14]  Paul A. Yushkevich,et al.  Segmentation, registration, and measurement of shape variation via image object shape , 1999, IEEE Transactions on Medical Imaging.

[15]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[16]  Philip Rabinowitz,et al.  Numerical methods for nonlinear algebraic equations , 1970 .

[17]  W. E. Hartnett,et al.  Shape Recognition, Prairie Fires, Convex Deficiencies and Skeletons , 1968 .

[18]  Peter Lorenzen,et al.  Multi-modal image set registration and atlas formation , 2006, Medical Image Anal..

[19]  Koenraad Van Leemput,et al.  Automated model-based tissue classification of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[20]  J. Damon Global geometry of regions and boundaries via skeletal and medial integrals , 2007 .

[21]  Stephen M. Pizer,et al.  Interpolation in Discrete Single Figure Medial Objects , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[22]  Xavier Pennec,et al.  Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements , 1999, NSIP.

[23]  Michael Leyton,et al.  Symmetry-curvature duality , 1987, Comput. Vis. Graph. Image Process..

[24]  J. J. Higgins,et al.  A Study of Multivariate Permutation Tests Which May Replace Hotelling's T2 Test in Prescribed Circumstances. , 1994, Multivariate behavioral research.

[25]  Martin Styner,et al.  Statistical surface-based morphometry using a nonparametric approach , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[26]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[27]  Paul A. Yushkevich,et al.  Parametric Medial Shape Representation in 3-D via the Poisson Partial Differential Equation with Non-linear Boundary Conditions , 2005, IPMI.

[28]  Martin Styner,et al.  Automatic and Robust Computation of 3D Medial Models Incorporating Object Variability , 2003, International Journal of Computer Vision.

[29]  Paul A. Yushkevich,et al.  Continuous medial representations for geometric object modeling in 2D and 3D , 2003, Image Vis. Comput..

[30]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[31]  Thierry Blu,et al.  Complete parameterization of piecewise-polynomial interpolation kernels , 2003, IEEE Trans. Image Process..

[32]  R. Kikinis,et al.  Characterization and recognition of 3D organ shape in medical image analysis using skeletonization , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[33]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[34]  F. Pesarin Multivariate Permutation Tests : With Applications in Biostatistics , 2001 .

[35]  Scott Schaefer,et al.  A factored approach to subdivision surfaces , 2004, IEEE Computer Graphics and Applications.

[36]  H. Blum Biological shape and visual science (part I) , 1973 .

[37]  J. Kostrowicki,et al.  Diffusion equation method of global minimization: Performance for standard test functions , 1991 .

[38]  J. Damon Smoothness and geometry of boundaries associated to skeletal structures, II: Geometry in the Blum case , 2004, Compositio Mathematica.

[39]  Nicholas Ayache,et al.  A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.

[40]  Nicholas M. Patrikalakis,et al.  An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids , 1996, IEEE Trans. Vis. Comput. Graph..

[41]  Ali Shokoufandeh,et al.  Retrieving Articulated 3-D Models Using Medial Surfaces and Their Graph Spectra , 2005, EMMCVPR.

[42]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[43]  Guido Gerig,et al.  A Continuous 3-D Medial Shape Model With Branching , 2006 .

[44]  Ali Shokoufandeh,et al.  Indexing hierarchical structures using graph spectra , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[46]  T. Sørensen,et al.  A method of establishing group of equal amplitude in plant sociobiology based on similarity of species content and its application to analyses of the vegetation on Danish commons , 1948 .

[47]  Debasish Dutta,et al.  Boundary surface recovery from skeleton curves and surfaces , 1995, Comput. Aided Geom. Des..

[48]  P. Thomas Fletcher,et al.  Multi-scale 3-D Deformable Model Segmentation Based on Medial Description , 2001, IPMI.

[49]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[50]  Lee R. Nackman Three-dimensional shape description using the symmetric axis transform , 1982 .

[51]  Antoine Manzanera,et al.  Medial faces from a concise 3D thinning algorithm , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[52]  Hans Henrik Thodberg,et al.  Minimum Description Length Shape and Appearance Models , 2003, IPMI.

[53]  S. Zucker,et al.  Toward a computational theory of shape: an overview , 1990, eccv 1990.

[54]  R. Kikinis,et al.  Amygdala–hippocampal shape differences in schizophrenia: the application of 3D shape models to volumetric MR data , 2002, Psychiatry Research: Neuroimaging.

[55]  Fred L. Bookstein,et al.  Landmark methods for forms without landmarks: morphometrics of group differences in outline shape , 1997, Medical Image Anal..

[56]  Michael I. Miller,et al.  A deformable neuroanatomy textbook based on viscous uid mechanics , 1993 .

[57]  Ralph Costa Teixeira,et al.  Curvature motions, medial axes and distance transforms , 1998 .

[58]  Wendell H. Fleming,et al.  Normal and Integral Currents , 1960 .

[59]  Gábor Székely,et al.  Multiscale Medial Loci and Their Properties , 2003, International Journal of Computer Vision.

[60]  David H. Eberly,et al.  Zoom-Invariant Vision of Figural Shape: The Mathematics of Cores , 1996, Comput. Vis. Image Underst..

[61]  Charles T. Loop Second order smoothness over extraordinary vertices , 2004, SGP '04.

[62]  Guido Gerig,et al.  Parametrization of Closed Surfaces for 3-D Shape Description , 1995, Comput. Vis. Image Underst..

[63]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[64]  James N. Damon,et al.  Swept regions and surfaces: Modeling and volumetric properties , 2008, Theor. Comput. Sci..

[65]  C. A. Burbeck,et al.  Linking object boundaries at scale: a common mechanism for size and shape judgments , 1996, Vision Research.

[66]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[67]  J. J. Moré,et al.  Global continuation for distance geometry problems , 1995 .

[68]  Larry S. Davis,et al.  Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[69]  S. Pizer,et al.  Statistical shape characterization using the medial representation , 2003 .

[70]  Douglas W. Jones,et al.  Shape analysis of brain ventricles using SPHARM , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[71]  Olivier D. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[72]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[73]  S. Joshi,et al.  Template estimation form unlabeled point set data and surfaces for Computational Anatomy , 2006 .

[74]  Douglas W. Jones,et al.  Morphometric analysis of lateral ventricles in schizophrenia and healthy controls regarding genetic and disease-specific factors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Hans-Peter Meinzer,et al.  3D Active Shape Models Using Gradient Descent Optimization of Description Length , 2005, IPMI.

[76]  W. Kendall Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .

[77]  Tomas Akenine-Möller,et al.  Fast, Minimum Storage Ray-Triangle Intersection , 1997, J. Graphics, GPU, & Game Tools.

[78]  S. Mauch A Fast Algorithm for Computing the Closest Point and Distance Transform , 2000 .

[79]  R. Keys Cubic convolution interpolation for digital image processing , 1981 .

[80]  D J Rogers,et al.  A Computer Program for Classifying Plants. , 1960, Science.

[81]  Hal Daumé From Zero to Reproducing Kernel Hilbert Spaces in Twelve Pages or Less , 2006 .

[82]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[83]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[84]  Brian Mirtich,et al.  Fast and Accurate Computation of Polyhedral Mass Properties , 1996, J. Graphics, GPU, & Game Tools.

[85]  R. Whitaker,et al.  Riemannian Metrics on the Space of Solid Shapes , 2006 .

[86]  D. M. Keenan,et al.  Towards automated image understanding , 1989 .

[87]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[88]  Alex Pentland,et al.  Shape analysis of brain structures using physical and experimental modes , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[89]  Gabriella Sanniti di Baja,et al.  Computing skeletons in three dimensions , 1999, Pattern Recognit..

[90]  Q. Han,et al.  Representing multifigure anatomical objects , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[91]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[92]  Martin Styner,et al.  Statistics of Pose and Shape in Multi-object Complexes Using Principal Geodesic Analysis , 2006, MIAR.

[93]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[94]  Christoph M. Hoffmann,et al.  Validity Determination for MAT Surface Representation , 1994, IMA Conference on the Mathematics of Surfaces.

[95]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[96]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[97]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[98]  F. Pesarin,et al.  A Class of Combinations of Dependent Tests by a Resampling Procedure , 1992 .

[99]  Donald Fraser,et al.  Randomization Tests for a Multivariate Two-Sample Problem , 1958 .

[100]  Nicholas Ayache,et al.  Topological segmentation of discrete surfaces , 2005, International Journal of Computer Vision.

[101]  J. V. Bradley Distribution-Free Statistical Tests , 1968 .

[102]  James N. Damon,et al.  Tree Structure for Contractible Regions in ℝ3 , 2007, International Journal of Computer Vision.

[103]  M. Brady,et al.  Smoothed Local Symmetries and Their Implementation , 1984 .

[104]  Benjamin B. Kimia,et al.  Computation of the shock scaffold for unorganized point clouds in 3D , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[105]  Guido Gerig,et al.  Hypothesis Testing with Nonlinear Shape Models , 2005, IPMI.

[106]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[107]  P. J. Vermeer Medial axis transform to boundary representation conversion , 1994 .

[108]  W. Eric L. Grimson,et al.  Small Sample Size Learning for Shape Analysis of Anatomical Structures , 2000, MICCAI.

[109]  J. Damon Smoothness and geometry of boundaries associated to skeletal structures, II: Geometry in the Blum case , 2004, Compositio Mathematica.

[110]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[111]  Joan Alexis Glaunès,et al.  Surface Matching via Currents , 2005, IPMI.

[112]  S. Pizer,et al.  Deformable solid modeling via medial sampling and displacement subdivision , 2004 .

[113]  Timothy F. Cootes,et al.  Training Models of Shape from Sets of Examples , 1992, BMVC.

[114]  Hemant D. Tagare,et al.  Symmetric, transitive, geometric deformation and intensity variation invariant nonrigid image registration , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[115]  Manolis I. A. Lourakis,et al.  Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[116]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[117]  D. Louis Collins,et al.  Hippocampal shape analysis using medial surfaces , 2001, NeuroImage.

[118]  J. Psotka Perceptual processes that may create stick figures and balance. , 1978, Journal of experimental psychology. Human perception and performance.

[119]  Peter Giblin,et al.  Local Symmetry of Plane Curves , 1985 .

[120]  Hartmut Prautzsch,et al.  A G2-Subdivision Algorithm , 1996, Geometric Modelling.

[121]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[122]  W. Eric L. Grimson,et al.  Fixed topology skeletons , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[123]  James C. Gee,et al.  Atlas warping for brain morphometry , 1998, Medical Imaging.

[124]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[125]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[126]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[127]  Damian J. Sheehy,et al.  Shape Description By Medial Surface Construction , 1996, IEEE Trans. Vis. Comput. Graph..

[128]  W. Eric L. Grimson,et al.  Statistical Shape Analysis Using Fixed Topology Skeletons: Corpus Callosum Study , 1999, IPMI.

[129]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..