Solvability-Unconcerned Inverse Kinematics by the Levenberg–Marquardt Method

A robust numerical solution to the inverse kinematics is proposed based on the Levenberg-Marquardt (LM) method, where the squared norm of residual of the original equation with a small bias is used for the damping factor. A rather simple idea remarkably improves the numerical stability and the convergence performance, even in unsolvable cases. Discussion is done through an investigation of the condition number of the coefficient matrix. Comparison tests with conventional methods show that only the proposed method succeeds in all cases. It frees operators from being careful about the target position-orientation assignment of effectors so that it facilitates easy robot motion designs and remote operations.

[1]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[2]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[3]  Donald L Peiper THE KINEMATICS OF MANIPULATORS UNDER COMPUTER CONTROL , 1968 .

[4]  D. E. Whitney,et al.  The mathematics of coordinated control of prosthetic arms and manipulators. , 1972 .

[5]  勝 内山 人工の手の運動制御に関する研究 : 第1報,特異点を考慮した協調運動の計算 , 1979 .

[6]  M. Uchiyama A Study of Computer Control of Motion of a Mechanical Arm : 1st Report, Calculation of Coordinative Motion Considering Singuler Points , 1979 .

[7]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[8]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[9]  W. W. Schrader,et al.  Efficient Computation of the Jacobian for Robot Manipulators , 1984 .

[10]  W. Wolovich,et al.  A computational technique for inverse kinematics , 1984, The 23rd IEEE Conference on Decision and Control.

[11]  Beno Benhabib,et al.  A complete generalized solution to the inverse kinematics of robots , 1985, IEEE J. Robotics Autom..

[12]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[13]  John Baillieul,et al.  Kinematic programming alternatives for redundant manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[14]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[15]  Charles W. Wampler,et al.  Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Methods , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[17]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[18]  Peter D. Lawrence,et al.  General inverse kinematics with the error damped pseudoinverse , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[19]  Pradeep K. Khosla,et al.  Automatic generation of kinematics for a reconfigurable modular manipulator system , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[20]  Anthony A. Maciejewski,et al.  Numerical filtering for the operation of robotic manipulators through kinematically singular configurations , 1988, J. Field Robotics.

[21]  Anthony A. Maciejewski,et al.  The Singular Value Decomposition: Computation and Applications to Robotics , 1989, Int. J. Robotics Res..

[22]  M. A. Zohdy,et al.  Robust Control of Robotic Manipulators , 1989, 1989 American Control Conference.

[23]  Jorge Angeles,et al.  Kinematic Inversion of Robotic Manipulators in the Presence of Redundancies , 1989, Int. J. Robotics Res..

[24]  E.D. Pohl,et al.  A new method of robotic motion control near singularities , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[25]  Harvey Lipkin,et al.  A new method of robotic rate control near singularities , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[26]  Bernard Roth,et al.  Kinematic analysis of the 6R manipulator of general geometry , 1991 .

[27]  Chih-Cheng Chen,et al.  A combined optimization method for solving the inverse kinematics problems of mechanical manipulators , 1991, IEEE Trans. Robotics Autom..

[28]  Andrew K. C. Wong,et al.  A fast procedure for manipulator inverse kinematics evaluation and pseudoinverse robustness , 1992, IEEE Trans. Syst. Man Cybern..

[29]  Ian D. Walker,et al.  Robot subtask performance with singularity robustness using optimal damped least-squares , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[30]  Stefano Chiaverini,et al.  Estimate of the two smallest singular values of the Jacobian Matrix: Application to damped least-squares inverse kinematics , 1993, J. Field Robotics.

[31]  Ian D. Walker,et al.  Adaptive non-linear least squares for inverse kinematics , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[32]  Bruno Siciliano,et al.  Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator , 1994, IEEE Trans. Control. Syst. Technol..

[33]  Norman I. Badler,et al.  Inverse kinematics positioning using nonlinear programming for highly articulated figures , 1994, TOGS.

[34]  David J. Thuente,et al.  Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.

[35]  B. Roth,et al.  Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators , 1995 .

[36]  Shinobu Sasaki,et al.  Feasibility studies of kinematics problems in the case of a class of redundant manipulators , 1995, Robotica.

[37]  Yu-Che Chen,et al.  Removing singularities of resolved motion rate control of mechanisms, including self-motion , 1997, IEEE Trans. Robotics Autom..

[38]  Masaru Uchiyama,et al.  Singularity-Consistent Behavior of Telerobots: Theory and Experiments , 1998, Int. J. Robotics Res..

[39]  Gene H. Golub,et al.  Tikhonov Regularization and Total Least Squares , 1999, SIAM J. Matrix Anal. Appl..

[40]  Katsu Yamane,et al.  Dynamics computation of structure-varying kinematic chains and its application to human figures , 2000, IEEE Trans. Robotics Autom..

[41]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[42]  Katsu Yamane,et al.  Natural Motion Animation through Constraining and Deconstraining at Will , 2003, IEEE Trans. Vis. Comput. Graph..

[43]  Samuel R. Buss,et al.  Selectively Damped Least Squares for Inverse Kinematics , 2005, J. Graph. Tools.

[44]  Arjang Hourtash The kinematic Hessian and higher derivatives , 2005, 2005 International Symposium on Computational Intelligence in Robotics and Automation.

[45]  Y. Choi,et al.  Singularity-Robust Inverse Kinematics Using Lagrange Multiplier for Redundant Manipulators , 2008 .

[46]  Yoshihiko Nakamura,et al.  Hardware design of high performance miniature anthropomorphic robots , 2008, Robotics Auton. Syst..