Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery

The photocatalytic conversion of the greenhouse gas CO2 to chemical fuels such as hydrocarbons and alcohols continues to be a promising technology for renewable generation of energy. Major advancements have been made in improving the efficiencies and product selectiveness of currently known CO2 reduction electrocatalysts, nonetheless, materials discovery is needed to enable economically viable, industrial-scale CO2 reduction. We report here the largest CO2 photocathode search to date, starting with 68860 candidate materials, using a rational first-principles computation-based screening strategy to evaluate synthesizability, corrosion resistance, visible-light absorption, and compatibility of the electronic structure with fuel synthesis. The results confirm the observation of the literature that few materials meet the stringent CO2 photocathode requirements, with only 52 materials meeting all requirements. The results are well validated with respect to the literature, with 9 of these materials having been studied for CO2 reduction, and the remaining 43 materials are discoveries from our pipeline that merit further investigation.While the conversion of greenhouse CO2 to chemical fuels offers a promising renewable energy technology, there is a dire need for new materials. Here, authors report the largest CO2 photocathode search using a first-principles approach to identify both known and unreported candidate photocatalysts.

[1]  P. Kumta,et al.  Exploring tin tantalates and niobates as prospective catalyst supports for water electrolysis , 2009 .

[2]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[3]  Kristin A. Persson,et al.  Electrochemical Stability of Metastable Materials , 2017 .

[4]  U. Rössler New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors , 2011 .

[5]  J. Woolley,et al.  Effects of solid solution of Ga2Te3 with AIIBVI tellurides , 1960 .

[6]  R. Imbihl band gap , 2020, Catalysis from A to Z.

[7]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[8]  Liping Yu,et al.  Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. , 2014, Nature chemistry.

[9]  Lei Cheng,et al.  The Electrolyte Genome project: A big data approach in battery materials discovery , 2015 .

[10]  Yimei Zhu,et al.  Copper oxide nanocrystals. , 2005, Journal of the American Chemical Society.

[11]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[12]  Lianjun Liu,et al.  Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry , 2012 .

[13]  C. Felser,et al.  Systematical, experimental investigations on LiMgZ (Z = P, As, Sb) wide band gap semiconductors , 2011, 1108.0584.

[14]  Jibin Fan,et al.  Type‐II C2N/ZnTe Van Der Waals Heterostructure: A Promising Photocatalyst for Water Splitting , 2021, Advanced Materials Interfaces.

[15]  J. S. Lee,et al.  Aqueous-solution route to zinc telluride films for application to CO₂ reduction. , 2014, Angewandte Chemie.

[16]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[17]  Wei Xiao,et al.  Enhanced photocatalytic CO₂-reduction activity of anatase TiO₂ by coexposed {001} and {101} facets. , 2014, Journal of the American Chemical Society.

[18]  Y. Ping,et al.  Optimizing the Band Edges of Tungsten Trioxide for Water Oxidation: A First-Principles Study , 2014 .

[19]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[20]  T. Karakostas,et al.  On the phase diagram of the Ga-Te system in the composition range 55 at % Te , 1981 .

[21]  Muratahan Aykol,et al.  Thermodynamic limit for synthesis of metastable inorganic materials , 2018, Science Advances.

[22]  Jiaguo Yu,et al.  Improving Artificial Photosynthesis over Carbon Nitride by Gas–Liquid–Solid Interface Management for Full Light‐Induced CO2 Reduction to C1 and C2 Fuels and O2 , 2020, ChemSusChem.

[23]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[24]  M. Carter,et al.  Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties , 1998 .

[25]  Núria López,et al.  Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals , 2019, Nature Communications.

[26]  Wenguang Tu,et al.  Amino-Assisted Anchoring of CsPbBr3 Perovskite Quantum Dots on Porous g-C3 N4 for Enhanced Photocatalytic CO2 Reduction. , 2018, Angewandte Chemie.

[27]  A. Rebbah,et al.  Structure du dichlorure d'arsenic et de dicadmium , 1980 .

[28]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[29]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[30]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[31]  Anubhav Jain,et al.  The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles , 2015 .

[32]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  Cormac Toher,et al.  Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases , 2016, Nature Communications.

[35]  R. Kniep,et al.  Phase relations in the InBr3 - In2Te3 system and the crystal structure of InTeBr , 1980 .

[36]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[37]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[38]  W. Bronger,et al.  Zur synthese und kristallstruktur von alkalimetallgold-chalkogeniden AAuX mit A Na, K, Rb oder Cs und XS, Se oder Te , 1992 .

[39]  C. Hadenfeldt,et al.  Darstellung und Kristallstruktur der Calciumpnictidoxide Ca4P2O und Ca4As2O , 1988 .

[40]  J. Pierson,et al.  Electronic structures of Cu 2 O , Cu 4 O 3 , and CuO : A joint experimental and theoretical study , 2019 .

[41]  Kristin A. Persson,et al.  Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states , 2012 .

[42]  M. Ettenberg,et al.  Thermal Expansion of AlAs , 1970 .

[43]  T. Anderson,et al.  Thermochemistry of the Ga-Se System , 2015 .

[44]  H. Schwer,et al.  Infrared Lattice Vibrations of CdGa2Te4 , 1993 .

[45]  Jie Yu,et al.  Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment , 2017, Proceedings of the National Academy of Sciences.

[46]  G. Frank,et al.  Untersuchungen über ternäre Chalkogenide. VI. Über Ternäre Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber , 1955 .

[47]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[48]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[49]  M. Kanan,et al.  Selective increase in CO2 electroreduction activity at grain-boundary surface terminations , 2017, Science.

[50]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[51]  D. K. Dwivedi,et al.  Growth and characterization of zinc telluride thin films for photovoltaic applications , 2012 .

[52]  Mohammad Asadi,et al.  Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid , 2016, Science.

[53]  J. Brédas,et al.  A Joint Experimental and Theoretical Study of the Infrared Spectra of 2-Methyl-4-nitroaniline Crystals Oriented on Nanostructured Poly(Tetrafluoroethylene) Substrates , 2001 .

[54]  Douglas G. Brookins,et al.  Eh-PH diagrams for geochemistry , 1988 .

[55]  Jürgen Müller,et al.  VERBINDUNGEN IN DEN SYSTEMEN KALIUM(RUBIDIUM)/GOLD/ANTIMON : K3AU3SB2, RB3AU3SB2 UND K1,74RB0,26RBAU3SB2 , 1996 .

[56]  Sheng Zeng,et al.  A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials , 2018, Nanotechnology.

[57]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[58]  A. Jayaraman,et al.  Pressure-Induced Electronic Collapse and Structural Changes in Rare-Earth Monochalcogenides , 1972 .

[59]  J. Barrett Inorganic chemistry in aqueous solution , 2003 .

[60]  H. Mizoguchi,et al.  Low temperature synthesis and characterization of SnTa2O6 , 2009 .

[61]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[62]  Kristin A. Persson,et al.  Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments , 2017 .

[63]  Y. Hori,et al.  Electrochemical CO 2 Reduction on Metal Electrodes , 2008 .

[64]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[65]  Yang-Fan Xu,et al.  Enhanced Solar-Driven Gaseous CO2 Conversion by CsPbBr3 Nanocrystal/Pd Nanosheet Schottky-Junction Photocatalyst , 2018, ACS Applied Energy Materials.

[66]  Jeremy L. Hitt,et al.  Renewable electricity storage using electrolysis , 2019, Proceedings of the National Academy of Sciences.

[67]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[68]  Linggang Zhu,et al.  MXene: a promising photocatalyst for water splitting , 2016 .

[69]  M. S. Hegde,et al.  Ce1-xRuxO2-δ (x=0.05, 0.10): A New High Oxygen Storage Material and Pt, Pd-Free Three-Way Catalyst , 2009 .

[70]  L. C. Towle,et al.  Molybdenum Diselenide: Rhombohedral High Pressure-High Temperature Polymorph , 1966, Science.

[71]  A. Springthorpe,et al.  Growth of some single crystal II–IV–V2 semiconducting compounds , 1968 .

[72]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[73]  J. Ibers,et al.  Syntheses, crystal structures, and band gaps of Cs2Cd3Te4 and Rb2Cd3Te4 , 2000 .

[74]  R. Hennig,et al.  Computational Screening of 2D Materials for Photocatalysis. , 2015, The journal of physical chemistry letters.

[75]  R. V. Van Duyne,et al.  Tuning of optical band gaps: syntheses, structures, magnetic properties, and optical properties of CsLnZnSe(3) (Ln = Sm, Tb, Dy, Ho, Er, Tm, Yb, and Y). , 2002, Inorganic chemistry.

[76]  M. Grandolfo,et al.  Electron diffraction study of melt- and vapour-grown GaSe1-xSx single crystals , 1976 .

[77]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[78]  Jinhua Ye,et al.  Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3. , 2015, Chemical communications.

[79]  R. Lieth Preparation and Crystal Growth of Materials with Layered Structures , 1977 .

[80]  F. Illas,et al.  An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations , 2017 .

[81]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[82]  J. Pierson,et al.  Electronic structures of Cu2O, Cu4O3, and CuO: A joint experimental and theoretical study , 2016 .

[83]  T. Wadsten,et al.  The Crystal Structure of SiAs. , 1965 .

[84]  H. Sobotta,et al.  Preparation, structure, and infrared lattice vibrations of LiInTe2 , 1985 .

[85]  R. V. Duyne,et al.  Syntheses, Crystal and Band Structures, and Magnetic and Optical Properties of New CsLnCdTe(3) (Ln = La, Pr, Nd, Sm, Gd-Tm, and Lu). , 2008, Inorganic chemistry.