The Efficiency of the Simplex Method: A Survey

The Linear Programming Problem is by far the most widely used optimization model. Its impact on economic and government modeling is immense. The Simplex Method for solving the Linear Programming LP Problem, due to George Dantzig, has been an extremely efficient computational tool for almost four decades. The method has been the subject of intense investigations for many years, but some major aspects of its behavior are not fully understood yet. The purpose of this paper is to survey the body of knowledge on the efficiency of the Simplex Method, from both practical and theoretical points of view. Adopting the number of iterations pivot steps as the yardstick for efficiency, we survey four aspects of the issue: 1. Reports on practical experience of the method's performance on real-life LP problems. 2. Results on controlled Monte-Carlo experiments solving LP problems which were randomly generated according to some predetermined distributions. 3. Complexity results, including theoretical analyses on both upper and lower bounds for the performance of the Simplex as well as non-Simplex algorithms for LP. 4. Results of recent theoretical studies using probabilistic analysis to derive bounds on the average behavior of the Simplex Method. We discuss the consequences and limitations of the various studies. Special emphasis is given to open questions.

[1]  R. Buck Partition of Space , 1943 .

[2]  A. Charnes Optimality and Degeneracy in Linear Programming , 1952 .

[3]  T. L. Saaty,et al.  The computational algorithm for the parametric objective function , 1955 .

[4]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[5]  J. C. Dickson,et al.  A decision rule for improved efficiency in solving linear programming problems with the simplex algorithm , 1960, CACM.

[6]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[7]  P. Wolfe A Technique for Resolving Degeneracy in Linear Programming , 1963 .

[8]  V. Klee Diameters of Polyhedral Graphs , 1964, Canadian Journal of Mathematics.

[9]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[10]  L. Cooper,et al.  A comparison of the primal-simplex and primal-dual algorithms for linear programming , 1965, CACM.

[11]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[12]  T. Cover,et al.  Geometrical Probability and Random Points on a Hypersphere , 1967 .

[13]  V. Klee,et al.  Thed-step conjecture for polyhedra of dimensiond<6 , 1967 .

[14]  W. Schmidt Some results in probabilistic geometry , 1968 .

[15]  D. Gale How to Solve Linear Inequalities , 1969 .

[16]  D. Larman Paths on Polytopes , 1970 .

[17]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[18]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[19]  H. Carnal Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten , 1970 .

[20]  D. Barnette The minimum number of vertices of a simple polytope , 1971 .

[21]  A. Prékopa On the number of vertices of random convex polyhedra , 1972 .

[22]  Paula M. J. Harris Pivot selection methods of the Devex LP code , 1973, Math. Program..

[23]  Robert G. Jeroslow,et al.  The simplex algorithm with the pivot rule of maximizing criterion improvement , 1973, Discret. Math..

[24]  Arunachalam Ravindran,et al.  A comparison of the primal-simplex and complementary pivot methods for linear programming , 1973 .

[25]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[26]  V. Klee Polytope pairs and their relationship to linear programming , 1974 .

[27]  Ilan Adler,et al.  Lower bounds for maximum diameters of polytopes , 1974 .

[28]  R. E. Marsten An Algorithm for Large Set Partitioning Problems , 1974 .

[29]  Fred W. Glover,et al.  Implementation and computational comparisons of primal, dual and primal-dual computer codes for minimum cost network flow problems , 1974, Networks.

[30]  E. Kay,et al.  Graph Theory. An Algorithmic Approach , 1975 .

[31]  H. Crowder,et al.  Partially normalized pivot selection in linear programming , 1975 .

[32]  Nicos Christofides,et al.  Graph theory: An algorithmic approach (Computer science and applied mathematics) , 1975 .

[33]  William H. Cunningham,et al.  A network simplex method , 1976, Math. Program..

[34]  L. Santaló Integral geometry and geometric probability , 1976 .

[35]  E. Balas,et al.  Set Partitioning: A survey , 1976 .

[36]  Herbert E. Scarf,et al.  The Solution of Systems of Piecewise Linear Equations , 1976, Math. Oper. Res..

[37]  Brian K. Schmidt,et al.  The Probability that a Random Polytope is Bounded , 1977, Math. Oper. Res..

[38]  Michel Bénichou,et al.  The efficient solution of large-scale linear programming problems—some algorithmic techniques and computational results , 1977, Math. Program..

[39]  Robert G. Bland,et al.  New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..

[40]  Donald Goldfarb,et al.  A practicable steepest-edge simplex algorithm , 1977, Math. Program..

[41]  V. Chvátal,et al.  Notes on Bland’s pivoting rule , 1978 .

[42]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[43]  W. H. Cunningham,et al.  Theoretical Properties of the Network Simplex Method , 1979, Math. Oper. Res..

[44]  William Y. Sit,et al.  Worst case behavior of the steepest edge simplex method , 1979, Discret. Appl. Math..

[45]  Roy E. Marsten,et al.  Crew Planning at Flying Tiger: A Successful Application of Integer Programming , 1979 .

[46]  G. Dantzig Comments on Khachian's Algorithm for Linear Programming. , 1979 .

[47]  P. Wolfe The "Ellipsoid Algorithm" , 1980, Science.

[48]  M. Todd,et al.  The Ellipsoid Method: A Survey , 1980 .

[49]  Michael J. Todd,et al.  The Monotonic Bounded Hirsch Conjecture is False for Dimension at Least 4 , 1980, Math. Oper. Res..

[50]  Norman Zadeh What is the Worst Case Behavior of the Simplex Algorithm , 1980 .

[51]  Alex Orden A step toward probabilistic analysis of simplex method convergence , 1980, Math. Program..

[52]  James K. Ho,et al.  A Comparative Study of Two Methods for Staircase Linear Programs , 1980, TOMS.

[53]  G. Dantzig Expected Number of Steps of the Simplex Method for a Linear Program with a Convexity Constraint. , 1980 .

[54]  L. Lovász A new linear programming algorithm — better or worse than the Simplex Method? , 1980 .

[55]  Katta G. Murty,et al.  Computational complexity of parametric linear programming , 1980, Math. Program..

[56]  Ludo van der Heyden,et al.  A variable dimension algorithm for the linear complementarity problem , 1980, Math. Program..

[57]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[58]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[59]  Sancho E. Berenguer,et al.  Random Linear Programs. , 1981 .

[60]  D. G. Kelly,et al.  Expected Number of Vertices of a Random Convex Polyhedron , 1981 .

[61]  Michael J. Todd,et al.  Feature Article - The Ellipsoid Method: A Survey , 1981, Oper. Res..

[62]  Michael J. Todd,et al.  Modifications and implementation of the ellipsoid algorithm for linear programming , 1982, Math. Program..

[63]  Robert L. Smith,et al.  Random polytopes: Their definition, generation and aggregate properties , 1982, Math. Program..

[64]  Edward H. McCall Performance results of the simplex algorithm for a set of real-world linear programming models , 1982, CACM.

[65]  Nimrod Megiddo,et al.  Is Binary Encoding Appropriate for the Problem-Language Relationship? , 1982, Theor. Comput. Sci..

[66]  Leonid A. Levin,et al.  An old linear programming algorithm runs in polynomial time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[67]  Karl-Heinz Borgwardt,et al.  The Average number of pivot steps required by the Simplex-Method is polynomial , 1982, Z. Oper. Research.

[68]  S. Ursic The ellipsoid algorithm for linear inequalities in exact arithmetic , 1982, FOCS 1982.

[69]  Karl Heinz Borgwardt,et al.  Some Distribution-Independent Results About the Asymptotic Order of the Average Number of Pivot Steps of the Simplex Method , 1982, Math. Oper. Res..

[70]  Steve Smale,et al.  The Problem of the Average Speed of the Simplex Method , 1982, ISMP.

[71]  Henryk Wozniakowski,et al.  Complexity of linear programming , 1982, Oper. Res. Lett..

[72]  S. Ross A Simple Heuristic Approach to Simplex Efficiency. , 1982 .

[73]  Orlin James B. . A polynomial-time parametric simplex algorithm for the minimum cost network flow problem , 1983 .

[74]  Richard M. Karp,et al.  A Family of Simplex Variants Solving for An mxd Linear Program in , 1983 .

[75]  Stephen Smale,et al.  On the average number of steps of the simplex method of linear programming , 1983, Math. Program..

[76]  James K. Ho,et al.  Computational experience with advanced implementation of decomposition algorithms for linear programming , 1983, Math. Program..

[77]  W. B. van Dam,et al.  Randomly generated polytopes for testing mathematical programming algorithms , 1983, Math. Program..

[78]  R. Karp,et al.  A Simplex Variant Solving An mxd Linear Program in O(min(m squared, d , 1983 .

[79]  Ron Shamir,et al.  On the efficiency of the simplex method (linear programming, complexity, algorithms) , 1984 .

[80]  M. Todd Complementarity in Oriented Matroids , 1984 .

[81]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[82]  Per Olov Lindberg,et al.  On the length of simplex paths: The assignment case , 1984, Math. Program..

[83]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[84]  Nimrod Megiddo,et al.  A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension , 1985, JACM.

[85]  Michael J. Todd,et al.  Polynomial expected behavior of a pivoting algorithm for linear complementarity and linear programming problems , 1986, Math. Program..

[86]  Nimrod Megiddo,et al.  On the expected number of linear complementarity cones intersected by random and semi-random rays , 1986, Math. Program..

[87]  Nimrod Megiddo,et al.  Improved asymptotic analysis of the average number of steps performed by the self-dual simplex algorithm , 1986, Math. Program..

[88]  Robert L. Smith,et al.  The expected number of extreme points of a random linear program , 1986, Math. Program..

[89]  Charles E. Blair,et al.  Random linear programs with many variables and few constraints , 1986, Math. Program..

[90]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[91]  Richard M. Karp,et al.  A simplex variant solving an m times d linear program in O(min(m2, d2) expected number of pivot steps , 1987, J. Complex..