The SAT2002 Competition

SAT Competition 2002 held in March–May 2002 in conjunction with SAT 2002 (the Fifth International Symposium on the Theory and Applications of Satisfiability Testing). About 30 solvers and 2300 benchmarks took part in the competition, which required more than 2 CPU years to complete the evaluation. In this report, we give the results of the competition, try to interpret them, and give suggestions for future competitions.

[1]  Allen Van Gelder,et al.  Lemma and cut strategies for propositional model elimination , 2004, Annals of Mathematics and Artificial Intelligence.

[2]  Geoff Sutcliffe,et al.  Evaluating general purpose automated theorem proving systems , 2001, Artif. Intell..

[3]  Osamu Watanabe,et al.  A Probabilistic 3-SAT Algorithm Further Improved , 2002, STACS.

[4]  Philippe Chatalic,et al.  Multi-resolution on compressed sets of clauses , 2000, Proceedings 12th IEEE Internationals Conference on Tools with Artificial Intelligence. ICTAI 2000.

[5]  Igor L. Markov,et al.  Toward CAD-IP reuse: a web bookshelf of fundamental algorithms , 2002, IEEE Design & Test of Computers.

[6]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[7]  S. Prestwich,et al.  A SAT Approach to Query Optimization in Mediator Systems , 2005 .

[8]  John N. Hooker,et al.  Testing heuristics: We have it all wrong , 1995, J. Heuristics.

[9]  Allen Van Gelder,et al.  Satisfiability testing with more reasoning and less guessing , 1995, Cliques, Coloring, and Satisfiability.

[10]  Lakhdar Sais,et al.  Recovering and Exploiting Structural Knowledge from CNF Formulas , 2002, CP.

[11]  Masahiro Fujita,et al.  Symbolic model checking using SAT procedures instead of BDDs , 1999, DAC '99.

[12]  E. A. Hirsch,et al.  UnitWalk: A New SAT Solver that Uses Local Search Guided by Unit Clause Elimination , 2005 .

[13]  Jacques Carlier,et al.  SAT versus UNSAT , 1993, Cliques, Coloring, and Satisfiability.

[14]  Hans van Maaren,et al.  Solving satisfiability problems using elliptic approximations - effective branching rules , 2000, Discret. Appl. Math..

[15]  Allen Van Gelder Extracting (Easily) Checkable Proofs from a Satisfiability Solver that Employs both Preorder and Postorder Resolution , 2002, ISAIM.

[16]  Randal E. Bryant,et al.  Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[17]  Chu Min Li,et al.  Heuristics Based on Unit Propagation for Satisfiability Problems , 1997, IJCAI.

[18]  Benjamin W. Wah,et al.  A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability Problems , 1996, J. Glob. Optim..

[19]  John N. Hooker,et al.  Needed: An Empirical Science of Algorithms , 1994, Oper. Res..

[20]  Inês Lynce,et al.  Towards Provably Complete Stochastic Search Algorithms for Satisfiability , 2001, EPIA.

[21]  Fahiem Bacchus Exploring the Computational Tradeoff of more Reasoning and Less Searching , 2002 .

[22]  Chu Min Li,et al.  A Constraint-Based Approach to Narrow Search Trees for Satisfiability , 1999, Inf. Process. Lett..

[23]  Parosh Aziz Abdulla,et al.  Symbolic Reachability Analysis Based on SAT-Solvers , 2000, TACAS.

[24]  Gilles Dequen,et al.  A backbone-search heuristic for efficient solving of hard 3-SAT formulae , 2001, IJCAI.

[25]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[26]  David S. Johnson,et al.  Cliques, Coloring, and Satisfiability , 1996 .

[27]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.

[28]  Michael D. Ernst,et al.  Automatic SAT-Compilation of Planning Problems , 1997, IJCAI.

[29]  Karem A. Sakallah,et al.  GRASP—a new search algorithm for satisfiability , 1996, ICCAD 1996.

[30]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[31]  Christos H. Papadimitriou,et al.  On the Greedy Algorithm for Satisfiability , 1992, Information Processing Letters.

[32]  Lei Zheng,et al.  Improving SAT Using 2SAT , 2002, ACSC.

[33]  Inês Lynce,et al.  Efficient data structures for backtrack search SAT solvers , 2005 .

[34]  Edward A. Hirsch,et al.  SAT Local Search Algorithms: Worst-Case Study , 2000, Journal of Automated Reasoning.

[35]  Sharad Malik,et al.  Efficient conflict driven learning in a Boolean satisfiability solver , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[36]  Fahiem Bacchus,et al.  Enhancing Davis Putnam with extended binary clause reasoning , 2002, AAAI/IAAI.

[37]  Allen Van Gelder,et al.  Persistent and Quasi-Persistent Lemmas in Propositional Model Elimination , 2004, Annals of Mathematics and Artificial Intelligence.

[38]  Chu Min Li,et al.  Integrating Equivalency Reasoning into Davis-Putnam Procedure , 2000, AAAI/IAAI.

[39]  Edward A. Hirsch,et al.  New Worst-Case Upper Bounds for SAT , 2000, Journal of Automated Reasoning.

[40]  Jon M. Kleinberg,et al.  A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search , 2002, Theor. Comput. Sci..

[41]  Inês Lynce,et al.  Stochastic Systematic Search Algorithms for Satisfiability , 2001, Electron. Notes Discret. Math..

[42]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[43]  Eugene Goldberg,et al.  BerkMin: A Fast and Robust Sat-Solver , 2002 .

[44]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[45]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[46]  Allen Van Gelder Autarky Pruning in Propositional Model Elimination Reduces Failure Redundancy , 2004, Journal of Automated Reasoning.

[47]  Joao Marques-Silva,et al.  Using Randomization and Learning to Solve Hard Real-World Instances of Satisfiability , 2000, CP.

[48]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[49]  J. Freeman Improvements to propositional satisfiability search algorithms , 1995 .

[50]  Allen Van Gelder Generalizations of Watched Literals for Backtracking Search , 2002, ISAIM.

[51]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[52]  Randal E. Bryant,et al.  Effective use of boolean satisfiability procedures in the formal verification of superscalar and VLIW , 2001, DAC '01.

[53]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[54]  Armando Tacchella,et al.  Benefits of Bounded Model Checking at an Industrial Setting , 2001, CAV.

[55]  Philippe Chatalic,et al.  SatEx: A Web-based Framework for SAT Experimentation , 2001, Electron. Notes Discret. Math..

[56]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[57]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[58]  Igor L. Markov,et al.  Solving difficult SAT instances in the presence of symmetry , 2002, Proceedings 2002 Design Automation Conference (IEEE Cat. No.02CH37324).

[59]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.