Why Should We Add Early Exits to Neural Networks?

[1]  Enzo Baccarelli,et al.  Optimized training and scalable implementation of Conditional Deep Neural Networks with early exits for Fog-supported IoT applications , 2020, Inf. Sci..

[2]  Enzo Baccarelli,et al.  Differentiable Branching In Deep Networks for Fast Inference , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[3]  Yochai Blau,et al.  Direct Validation of the Information Bottleneck Principle for Deep Nets , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[4]  Kaizhu Huang,et al.  Automatic Design of Deep Networks with Neural Blocks , 2019, Cognitive Computation.

[5]  Hung-Hsuan Chen,et al.  Associated Learning: Decomposing End-to-End Backpropagation Based on Autoencoders and Target Propagation , 2019, Neural Computation.

[6]  Bastiaan S. Veeling,et al.  Putting An End to End-to-End: Gradient-Isolated Learning of Representations , 2019, NeurIPS.

[7]  Xu Chen,et al.  Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing , 2019, Proceedings of the IEEE.

[8]  Enzo Baccarelli,et al.  EcoMobiFog–Design and Dynamic Optimization of a 5G Mobile-Fog-Cloud Multi-Tier Ecosystem for the Real-Time Distributed Execution of Stream Applications , 2019, IEEE Access.

[9]  Michael Eickenberg,et al.  Decoupled Greedy Learning of CNNs , 2019, ICML.

[10]  Arild Nøkland,et al.  Training Neural Networks with Local Error Signals , 2019, ICML.

[11]  Edouard Oyallon,et al.  Greedy Layerwise Learning Can Scale to ImageNet , 2018, ICML.

[12]  Mehdi Bennis,et al.  Wireless Network Intelligence at the Edge , 2018, Proceedings of the IEEE.

[13]  Tudor Dumitras,et al.  Shallow-Deep Networks: Understanding and Mitigating Network Overthinking , 2018, ICML.

[14]  Yochai Blau,et al.  The effectiveness of layer-by-layer training using the information bottleneck principle , 2018 .

[15]  Edouard Oyallon,et al.  Shallow Learning For Deep Networks , 2018 .

[16]  Marco Gori,et al.  Backpropagation and Biological Plausibility , 2018, ArXiv.

[17]  Diana Marculescu,et al.  Designing Adaptive Neural Networks for Energy-Constrained Image Classification , 2018, 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[18]  David Duvenaud,et al.  Neural Ordinary Differential Equations , 2018, NeurIPS.

[19]  Hongyang Zhang,et al.  Deep Neural Networks with Multi-Branch Architectures Are Less Non-Convex , 2018, ArXiv.

[20]  Paulo Valente Klaine,et al.  Distributed Drone Base Station Positioning for Emergency Cellular Networks Using Reinforcement Learning , 2018, Cognitive Computation.

[21]  Shai Shalev-Shwartz,et al.  A Provably Correct Algorithm for Deep Learning that Actually Works , 2018, ArXiv.

[22]  Jonathon S. Hare,et al.  Deep Cascade Learning , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[23]  Rana Ali Amjad,et al.  Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Taiji Suzuki,et al.  Functional Gradient Boosting based on Residual Network Perception , 2018, ICML.

[25]  David D. Cox,et al.  On the information bottleneck theory of deep learning , 2018, ICLR.

[26]  Quoc V. Le,et al.  Efficient Neural Architecture Search via Parameter Sharing , 2018, ICML.

[27]  Gert Cauwenberghs,et al.  Deep Supervised Learning Using Local Errors , 2017, Front. Neurosci..

[28]  Yoshua Bengio,et al.  Three Factors Influencing Minima in SGD , 2017, ArXiv.

[29]  Shih-Chieh Chang,et al.  A Dynamic Deep Neural Network Design for Efficient Workload Allocation in Edge Computing , 2017, 2017 IEEE International Conference on Computer Design (ICCD).

[30]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[31]  Yang Liu,et al.  Energy-efficient Amortized Inference with Cascaded Deep Classifiers , 2017, IJCAI.

[32]  Jian-Huang Lai,et al.  Deep Growing Learning , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[33]  Tong Tong,et al.  Image Super-Resolution Using Dense Skip Connections , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[34]  Steven Bohez,et al.  The cascading neural network: building the Internet of Smart Things , 2017, Knowledge and Information Systems.

[35]  John Langford,et al.  Learning Deep ResNet Blocks Sequentially using Boosting Theory , 2017, ICML.

[36]  Theodore Lim,et al.  FreezeOut: Accelerate Training by Progressively Freezing Layers , 2017, NIPS 2017.

[37]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[38]  Jeffrey Humpherys,et al.  Forward Thinking: Building and Training Neural Networks One Layer at a Time , 2017, ArXiv.

[39]  H. T. Kung,et al.  Distributed Deep Neural Networks Over the Cloud, the Edge and End Devices , 2017, 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).

[40]  Xin Wang,et al.  IDK Cascades: Fast Deep Learning by Learning not to Overthink , 2017, UAI.

[41]  Wenguan Wang,et al.  Deep Visual Attention Prediction , 2017, IEEE Transactions on Image Processing.

[42]  Enzo Baccarelli,et al.  Fog of Everything: Energy-Efficient Networked Computing Architectures, Research Challenges, and a Case Study , 2017, IEEE Access.

[43]  Venkatesh Saligrama,et al.  Adaptive Classification for Prediction Under a Budget , 2017, NIPS.

[44]  Narendra Ahuja,et al.  Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Mandar Kulkarni,et al.  Layer-wise training of deep networks using kernel similarity , 2017, ArXiv.

[46]  Max Welling,et al.  Modeling Relational Data with Graph Convolutional Networks , 2017, ESWC.

[47]  Naftali Tishby,et al.  Opening the Black Box of Deep Neural Networks via Information , 2017, ArXiv.

[48]  Venkatesh Saligrama,et al.  Adaptive Neural Networks for Efficient Inference , 2017, ICML.

[49]  Zdenek Becvar,et al.  Mobile Edge Computing: A Survey on Architecture and Computation Offloading , 2017, IEEE Communications Surveys & Tutorials.

[50]  Kaushik Roy,et al.  Energy-Efficient and Improved Image Recognition with Conditional Deep Learning , 2017, ACM J. Emerg. Technol. Comput. Syst..

[51]  Pierre Baldi,et al.  Learning in the machine: Random backpropagation and the deep learning channel , 2016, Artif. Intell..

[52]  H. T. Kung,et al.  BranchyNet: Fast inference via early exiting from deep neural networks , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[53]  Chao Zhang,et al.  Hard-Aware Deeply Cascaded Embedding , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[54]  Colin J. Akerman,et al.  Random synaptic feedback weights support error backpropagation for deep learning , 2016, Nature Communications.

[55]  Simone Scardapane,et al.  A Framework for Parallel and Distributed Training of Neural Networks , 2016, Neural Networks.

[56]  Arild Nøkland,et al.  Direct Feedback Alignment Provides Learning in Deep Neural Networks , 2016, NIPS.

[57]  Rogério Schmidt Feris,et al.  A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection , 2016, ECCV.

[58]  Mehryar Mohri,et al.  AdaNet: Adaptive Structural Learning of Artificial Neural Networks , 2016, ICML.

[59]  Junwei Han,et al.  DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Yichen Shen,et al.  Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene , 2016, Nature Communications.

[61]  Bernt Schiele,et al.  DeeperCut: A Deeper, Stronger, and Faster Multi-person Pose Estimation Model , 2016, ECCV.

[62]  Ali Farhadi,et al.  XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks , 2016, ECCV.

[63]  Ran El-Yaniv,et al.  Binarized Neural Networks , 2016, NIPS.

[64]  Kyoung Mu Lee,et al.  Deeply-Recursive Convolutional Network for Image Super-Resolution , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Charles Elkan,et al.  Learning to Diagnose with LSTM Recurrent Neural Networks , 2015, ICLR.

[66]  Yi Yang,et al.  Attention to Scale: Scale-Aware Semantic Image Segmentation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Kaushik Roy,et al.  Conditional Deep Learning for energy-efficient and enhanced pattern recognition , 2015, 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[68]  Jie Liu,et al.  Scalable-effort classifiers for energy-efficient machine learning , 2015, DAC.

[69]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[70]  Yoshua Bengio,et al.  Difference Target Propagation , 2014, ECML/PKDD.

[71]  Xiaogang Wang,et al.  Deeply learned face representations are sparse, selective, and robust , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[72]  Sergio Barbarossa,et al.  Communicating While Computing: Distributed mobile cloud computing over 5G heterogeneous networks , 2014, IEEE Signal Processing Magazine.

[73]  Zhuowen Tu,et al.  Deeply-Supervised Nets , 2014, AISTATS.

[74]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[75]  Mazliza Othman,et al.  A Survey of Mobile Cloud Computing Application Models , 2014, IEEE Communications Surveys & Tutorials.

[76]  Yoshua Bengio,et al.  Exploring Strategies for Training Deep Neural Networks , 2009, J. Mach. Learn. Res..

[77]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[78]  Rich Caruana,et al.  Model compression , 2006, KDD '06.

[79]  Alekseĭ Grigorʹevich Ivakhnenko,et al.  CYBERNETIC PREDICTING DEVICES , 1966 .

[80]  Jane M. Zakovorotnaya,et al.  IEEE Transactions on Neural Networks and Learning Systems , 2019 .

[81]  Ran El-Yaniv,et al.  Binarized Neural Networks , 2016, ArXiv.

[82]  Geoffrey E. Hinton,et al.  Deep Learning , 2015 .

[83]  Charles Sheppard,et al.  References References , 1994 .