Adaptive disinhibitory gating by VIP interneurons permits associative learning

Learning drives behavioral adaptations necessary for survival. While plasticity of excitatory projection neurons during associative learning has been extensively studied, little is known about the contributions of local interneurons. Using fear conditioning as a model for associative learning, we found that behaviorally relevant, salient stimuli cause learning by tapping into a local microcircuit consisting of precisely connected subtypes of inhibitory interneurons. By employing deep-brain calcium imaging and optogenetics, we demonstrate that vasoactive intestinal peptide (VIP)-expressing interneurons in the basolateral amygdala are activated by aversive events and provide a mandatory disinhibitory signal for associative learning. Notably, VIP interneuron responses during learning are strongly modulated by expectations. Our findings indicate that VIP interneurons are a central component of a dynamic circuit motif that mediates adaptive disinhibitory gating to specifically learn about unexpected, salient events, thereby ensuring appropriate behavioral adaptations. Krabbe, Paradiso et al. show that amygdala VIP interneurons are activated by instructive cues for associative learning. These interneurons provide a mandatory disinhibitory signal permitting plasticity in response to unexpected salient events.

[1]  Joseph E LeDoux Emotion Circuits in the Brain , 2000 .

[2]  F. Mascagni,et al.  Synaptic connections of distinct interneuronal subpopulations in the rat basolateral amygdalar nucleus , 2003, The Journal of comparative neurology.

[3]  S. Arber,et al.  A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling , 2005, PLoS biology.

[4]  J. Betley,et al.  Neurons for hunger and thirst transmit a negative-valence teaching signal , 2015, Nature.

[5]  Norbert Hájos,et al.  Vasoactive Intestinal Polypeptide-Immunoreactive Interneurons within Circuits of the Mouse Basolateral Amygdala , 2018, The Journal of Neuroscience.

[6]  I. Soltesz,et al.  Target-selective GABAergic control of entorhinal cortex output , 2010, Nature Neuroscience.

[7]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[8]  Andreas Lüthi,et al.  Disinhibition, a Circuit Mechanism for Associative Learning and Memory , 2015, Neuron.

[9]  Benjamin F. Grewe,et al.  Distinct Hippocampal Pathways Mediate Dissociable Roles of Context in Memory Retrieval , 2016, Cell.

[10]  Praneeth Namburi,et al.  Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval , 2016, Neuron.

[11]  E. Tsvetkov,et al.  Spatiotemporal Asymmetry of Associative Synaptic Plasticity in Fear Conditioning Pathways , 2006, Neuron.

[12]  A. Lüthi,et al.  Switching on and off fear by distinct neuronal circuits , 2008, Nature.

[13]  Patricia H. Janak,et al.  Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal , 2009, Proceedings of the National Academy of Sciences.

[14]  Ullrich Köthe,et al.  Ilastik: Interactive learning and segmentation toolkit , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[15]  M. Carandini,et al.  Vision and Locomotion Shape the Interactions between Neuron Types in Mouse Visual Cortex , 2016, Neuron.

[16]  H. Schröder,et al.  The Mouse Cerebral Cortex , 2020 .

[17]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[18]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[19]  Benjamin F. Grewe,et al.  Amygdala ensembles encode behavioral states , 2019, Science.

[20]  Liqun Luo,et al.  Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses , 2015, The Journal of Neuroscience.

[21]  Nikolaos Karalis,et al.  Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression , 2013, Nature.

[22]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[23]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[24]  Joseph E LeDoux,et al.  Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: Parallel recordings in the freely behaving rat , 1995, Neuron.

[25]  Michele Pignatelli,et al.  Antagonistic negative and positive neurons of the basolateral amygdala , 2016, Nature Neuroscience.

[26]  Ethan S. Bromberg-Martin,et al.  Dopamine in Motivational Control: Rewarding, Aversive, and Alerting , 2010, Neuron.

[27]  Marco Capogna,et al.  Cell-Type-Specific Recruitment of Amygdala Interneurons to Hippocampal Theta Rhythm and Noxious Stimuli In Vivo , 2012, Neuron.

[28]  Andreas Lüthi,et al.  A competitive inhibitory circuit for selection of active and passive fear responses , 2017, Nature.

[29]  Angus Silver,et al.  NeuroMatic: An Integrated Open-Source Software Toolkit for Acquisition, Analysis and Simulation of Electrophysiological Data , 2018, Front. Neuroinform..

[30]  Paul W. Frankland,et al.  Parvalbumin interneurons constrain the size of the lateral amygdala engram , 2016, Neurobiology of Learning and Memory.

[31]  B. Hangya,et al.  Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback , 2015, Cell.

[32]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[33]  Miao He,et al.  Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells , 2017, Nature Neuroscience.

[34]  Michael J. Yetman,et al.  Intersectional Monosynaptic Tracing for Dissecting Subtype-Specific Organization of GABAergic Interneuron Inputs , 2018, Nature Neuroscience.

[35]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[36]  Andreas Lüthi,et al.  Regulating anxiety with extrasynaptic inhibition , 2015, Nature Neuroscience.

[37]  Nathan C. Klapoetke,et al.  Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance , 2015, Neuron.

[38]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[39]  Jason Tucciarone,et al.  Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex , 2016, Neuron.

[40]  Johannes J. Letzkus,et al.  Long-Range Connectivity Defines Behavioral Specificity of Amygdala Neurons , 2014, Neuron.

[41]  Karl Deisseroth,et al.  Optical activation of lateral amygdala pyramidal cells instructs associative fear learning , 2010, Proceedings of the National Academy of Sciences.

[42]  Y. Xuan,et al.  A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse , 2019, Nature Neuroscience.

[43]  H. T. Blair,et al.  Placing prediction into the fear circuit , 2011, Trends in Neurosciences.

[44]  Joshua D. Berke,et al.  Fast-Spiking Interneurons Supply Feedforward Control of Bursting, Calcium, and Plasticity for Efficient Learning , 2018, Cell.

[45]  A. Lüthi,et al.  Projection-Specific Dynamic Regulation of Inhibition in Amygdala Micro-Circuits , 2016, Neuron.

[46]  Joseph J. Paton,et al.  Expectation Modulates Neural Responses to Pleasant and Aversive Stimuli in Primate Amygdala , 2007, Neuron.

[47]  Joseph E LeDoux,et al.  Unconditioned stimulus pathways to the amygdala: effects of posterior thalamic and cortical lesions on fear conditioning , 2004, Neuroscience.

[48]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[49]  R. Naik Ramesh,et al.  Hunger-Dependent Enhancement of Food Cue Responses in Mouse Postrhinal Cortex and Lateral Amygdala , 2016, Neuron.

[50]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[51]  Vincent Villette,et al.  Connectivity and network state-dependent recruitment of long-range VIP-GABAergic neurons in the mouse hippocampus , 2018, Nature Communications.

[52]  K. Tye,et al.  Acute Food Deprivation Rapidly Modifies Valence-Coding Microcircuits in the Amygdala , 2018, bioRxiv.

[53]  R. Froemke Plasticity of cortical excitatory-inhibitory balance. , 2015, Annual review of neuroscience.

[54]  Sander W. Keemink,et al.  Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex , 2016, eLife.

[55]  R. Schneggenburger,et al.  Insular cortex processes aversive somatosensory information and is crucial for threat learning , 2019, Science.

[56]  Johannes J. Letzkus,et al.  Amygdala interneuron subtypes control fear learning through disinhibition , 2014, Nature.

[57]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[58]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[59]  H. T. Blair,et al.  Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray , 2010, Nature Neuroscience.

[60]  Gavan P McNally,et al.  Basolateral Amygdala Neurons Maintain Aversive Emotional Salience , 2017, The Journal of Neuroscience.

[61]  Grace W. Lindsay,et al.  Parallel processing by cortical inhibition enables context-dependent behavior , 2016, Nature Neuroscience.

[62]  Pablo E. Jercog,et al.  Neural ensemble dynamics underlying a long-term associative memory , 2017, Nature.

[63]  O. Yizhar,et al.  Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex , 2017, Nature Neuroscience.

[64]  M. Nicolelis,et al.  Neuronal Ensemble Bursting in the Basal Forebrain Encodes Salience Irrespective of Valence , 2008, Neuron.

[65]  J. Johansen,et al.  Learning rules for aversive associative memory formation , 2018, Current Opinion in Neurobiology.

[66]  Edward S Boyden,et al.  Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation , 2014, Proceedings of the National Academy of Sciences.

[67]  A. Lüthi,et al.  Projection-Specific Dynamic Regulation of Inhibition in Amygdala Micro-Circuits , 2016, Neuron.

[68]  A. Holtmaat,et al.  Sensory-evoked LTP driven by dendritic plateau potentials in vivo , 2014, Nature.

[69]  Kay M. Tye,et al.  Rapid strengthening of thalamo-amygdala synapses mediates cue–reward learning , 2008, Nature.

[70]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[71]  K. Conzelmann,et al.  Central amygdala circuits modulate food consumption through a positive-valence mechanism , 2017, Nature Neuroscience.

[72]  Lief E. Fenno,et al.  Targeting cells with single vectors using multiple-feature Boolean logic , 2014, Nature Methods.

[73]  A. Lüthi,et al.  Amygdala Inhibitory Circuits Regulate Associative Fear Conditioning , 2017, Biological Psychiatry.

[74]  Andreas Lüthi,et al.  Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition , 2006, Nature Neuroscience.

[75]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[76]  A. Lüthi,et al.  Neuronal circuits for fear and anxiety , 2015, Nature Reviews Neuroscience.

[77]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[78]  Andreas Lüthi,et al.  Dendritic Spine Heterogeneity Determines Afferent-Specific Hebbian Plasticity in the Amygdala , 2005, Neuron.