Models of Neuronal Stimulus-Response Functions: Elaboration, Estimation, and Evaluation

Rich, dynamic, and dense sensory stimuli are encoded within the nervous system by the time-varying activity of many individual neurons. A fundamental approach to understanding the nature of the encoded representation is to characterize the function that relates the moment-by-moment firing of a neuron to the recent history of a complex sensory input. This review provides a unifying and critical survey of the techniques that have been brought to bear on this effort thus far—ranging from the classical linear receptive field model to modern approaches incorporating normalization and other nonlinearities. We address separately the structure of the models; the criteria and algorithms used to identify the model parameters; and the role of regularizing terms or “priors.” In each case we consider benefits or drawbacks of various proposals, providing examples for when these methods work and when they may fail. Emphasis is placed on key concepts rather than mathematical details, so as to make the discussion accessible to readers from outside the field. Finally, we review ways in which the agreement between an assumed model and the neuron's response may be quantified. Re-implemented and unified code for many of the methods are made freely available.

[1]  Theodoros P. Zanos,et al.  Local field potentials reflect multiple spatial scales in V4 , 2013, Front. Comput. Neurosci..

[2]  Vasilis Z. Marmarelis,et al.  Analysis of Physiological Systems , 1978, Computers in Biology and Medicine.

[3]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[4]  Liam Paninski,et al.  Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.

[5]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[6]  Matthias Bethge,et al.  Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification , 2012, PLoS Comput. Biol..

[7]  Alexander Borst,et al.  Quantifying variability in neural responses and its application for the validation of model predictions , 2004, Network.

[8]  J. Fritz,et al.  Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex , 2003, Nature Neuroscience.

[9]  Uri T Eden,et al.  A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. , 2005, Journal of neurophysiology.

[10]  Thane Fremouw,et al.  Sound representation methods for spectro-temporal receptive field estimation , 2006, Journal of Computational Neuroscience.

[11]  C. Schreiner,et al.  Organization of inhibitory frequency receptive fields in cat primary auditory cortex. , 1999, Journal of neurophysiology.

[12]  Ji Zhu,et al.  Margin Maximizing Loss Functions , 2003, NIPS.

[13]  Léon Bottou,et al.  The Tradeoffs of Large Scale Learning , 2007, NIPS.

[14]  Jörn Anemüller,et al.  Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex , 2014, Front. Comput. Neurosci..

[15]  L. Paninski,et al.  Temporal Precision in the Visual Pathway through the Interplay of Excitation and Stimulus- Driven Suppression , 2022 .

[16]  Nicolas J. Kerscher,et al.  State-dependent receptive-field restructuring in the visual cortex , 1998, Nature.

[17]  Eero P. Simoncelli,et al.  Characterizing Neural Gain Control using Spike-triggered Covariance , 2001, NIPS.

[18]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[19]  Christoph E Schreiner,et al.  Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. , 2003, Journal of neurophysiology.

[20]  James G. Scott,et al.  Fully Bayesian inference for neural models with negative-binomial spiking , 2012, NIPS.

[21]  L. Paninski Maximum likelihood estimation of cascade point-process neural encoding models , 2004, Network.

[22]  E. S. Chornoboy,et al.  Maximum likelihood identification of neural point process systems , 1988, Biological Cybernetics.

[23]  D. M. Green,et al.  CONSISTENCY OF AUDITORY DETECTION JUDGMENTS. , 1963, Psychology Review.

[24]  E N Brown,et al.  An analysis of neural receptive field plasticity by point process adaptive filtering , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Max F. K. Happel,et al.  Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles , 2014, PloS one.

[26]  N. Mesgarani,et al.  Selective cortical representation of attended speaker in multi-talker speech perception , 2012, Nature.

[27]  Pascal Wallisch Local Field Potentials , 2014 .

[28]  H. Sompolinsky,et al.  Adaptation without parameter change: Dynamic gain control in motion detection , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Andrew D. Zaharia,et al.  The Detection of Visual Contrast in the Behaving Mouse , 2011, The Journal of Neuroscience.

[30]  Christian K. Machens,et al.  Linearity of Cortical Receptive Fields Measured with Natural Sounds , 2004, The Journal of Neuroscience.

[31]  J. Gallant,et al.  Predicting neuronal responses during natural vision , 2005, Network.

[32]  Wulfram Gerstner,et al.  Spiking Neuron Models: An Introduction , 2002 .

[33]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[34]  M. Sahani,et al.  State-Dependent Population Coding in Primary Auditory Cortex , 2015, The Journal of Neuroscience.

[35]  E D Young,et al.  Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Tatyana O. Sharpee,et al.  Minimal Models of Multidimensional Computations , 2011, PLoS Comput. Biol..

[37]  L. Paninski,et al.  Inferring input nonlinearities in neural encoding models , 2008, Network.

[38]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[39]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[40]  P. Green Iteratively reweighted least squares for maximum likelihood estimation , 1984 .

[41]  Jan Drugowitsch,et al.  Multiplicative and Additive Modulation of Neuronal Tuning with Population Activity Affects Encoded Information , 2016, Neuron.

[42]  Mijung Park,et al.  Receptive Field Inference with Localized Priors , 2011, PLoS Comput. Biol..

[43]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[44]  John P. Cunningham,et al.  Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity , 2008, NIPS.

[45]  Maneesh Sahani,et al.  Input-Specific Gain Modulation by Local Sensory Context Shapes Cortical and Thalamic Responses to Complex Sounds , 2016, Neuron.

[46]  K. Harris,et al.  Cortical state and attention , 2011, Nature Reviews Neuroscience.

[47]  K. Sen,et al.  Spectral-temporal Receptive Fields of Nonlinear Auditory Neurons Obtained Using Natural Sounds , 2022 .

[48]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[49]  B. Willmore,et al.  Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing , 2016, The Journal of Neuroscience.

[50]  Emery N. Brown,et al.  Dynamic Analysis of Neural Encoding by Point Process Adaptive Filtering , 2004, Neural Computation.

[51]  Tatyana O. Sharpee,et al.  Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models , 2011, PLoS Comput. Biol..

[52]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[53]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[54]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[55]  C. Kayser,et al.  Rhythmic Auditory Cortex Activity at Multiple Timescales Shapes Stimulus–Response Gain and Background Firing , 2015, The Journal of Neuroscience.

[56]  Frank W. Ohl,et al.  Quantifying neural coding noise in linear threshold models , 2013, 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER).

[57]  William A. Gardner,et al.  A unifying view of coherence in signal processing , 1992, Signal Process..

[58]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[59]  Maneesh Sahani,et al.  Equating information-theoretic and likelihood-based methods for neural dimensionality reduction , 2013, 1308.3542.

[60]  Il Memming Park,et al.  Bayesian Spike-Triggered Covariance Analysis , 2011, NIPS.

[61]  Liam Paninski,et al.  Estimation of Entropy and Mutual Information , 2003, Neural Computation.

[62]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[63]  M. DeWeese,et al.  Binary Spiking in Auditory Cortex , 2003, The Journal of Neuroscience.

[64]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[65]  M. Sahani,et al.  The Consequences of Response Nonlinearities for Interpretation of Spectrotemporal Receptive Fields , 2008, The Journal of Neuroscience.

[66]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[67]  Yuwei Cui,et al.  Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs , 2013, PLoS Comput. Biol..

[68]  Maneesh Sahani,et al.  How Linear are Auditory Cortical Responses? , 2002, NIPS.

[69]  Garrett B. Stanley,et al.  Adaptive Spatiotemporal Receptive Field Estimation in the Visual Pathway , 2002, Neural Computation.

[70]  Andrew J. King,et al.  Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons , 2016, PLoS Comput. Biol..

[71]  Kenneth D. Miller,et al.  Adaptive filtering enhances information transmission in visual cortex , 2006, Nature.

[72]  Martin Pienkowski,et al.  Nonlinear cross-frequency interactions in primary auditory cortex spectrotemporal receptive fields: a Wiener–Volterra analysis , 2010, Journal of Computational Neuroscience.

[73]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[74]  Bernhard Schölkopf,et al.  A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression , 2006, Neural Computation.

[75]  Y. Dan,et al.  Stimulation of non‐classical receptive field enhances orientation selectivity in the cat , 2005, The Journal of physiology.

[76]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[77]  Zhe Chen,et al.  Advanced state space methods for neural and clinical data , 2015 .

[78]  Mounya Elhilali,et al.  Task Difficulty and Performance Induce Diverse Adaptive Patterns in Gain and Shape of Primary Auditory Cortical Receptive Fields , 2009, Neuron.

[79]  S. David,et al.  Estimating sparse spectro-temporal receptive fields with natural stimuli , 2007, Network.

[80]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[81]  C. Schreiner,et al.  Time course of forward masking tuning curves in cat primary auditory cortex. , 1997, Journal of neurophysiology.

[82]  D. M. Green,et al.  CONSISTENCY OF AUDITORY DETECTION JUDGMENTS. , 1963, Psychological review.

[83]  Eero P. Simoncelli,et al.  Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis. , 2006, Journal of vision.

[84]  M. Sahani,et al.  Nonlinearities and Contextual Influences in Auditory Cortical Responses Modeled with Multilinear Spectrotemporal Methods , 2008, The Journal of Neuroscience.

[85]  Tatyana O Sharpee,et al.  On the importance of static nonlinearity in estimating spatiotemporal neural filters with natural stimuli. , 2008, Journal of neurophysiology.

[86]  Maneesh Sahani,et al.  Evidence Optimization Techniques for Estimating Stimulus-Response Functions , 2002, NIPS.

[87]  Nadja Schinkel-Bielefeld,et al.  Inferring the role of inhibition in auditory processing of complex natural stimuli. , 2012, Journal of neurophysiology.

[88]  Neil C. Rabinowitz,et al.  Contrast Gain Control in Auditory Cortex , 2011, Neuron.

[89]  Neil C. Rabinowitz,et al.  Spectrotemporal Contrast Kernels for Neurons in Primary Auditory Cortex , 2012, The Journal of Neuroscience.

[90]  Chun-I Yeh,et al.  Temporal precision in the neural code and the timescales of natural vision , 2007, Nature.

[91]  Jörn Anemüller,et al.  Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations , 2015, Journal of Neuroscience Methods.

[92]  Shihab A Shamma,et al.  Task reward structure shapes rapid receptive field plasticity in auditory cortex , 2012, Proceedings of the National Academy of Sciences.

[93]  R. Kass,et al.  Multiple neural spike train data analysis: state-of-the-art and future challenges , 2004, Nature Neuroscience.

[94]  Eero P. Simoncelli,et al.  Partitioning neuronal variability , 2014, Nature Neuroscience.

[95]  Eero P. Simoncelli,et al.  A Convolutional Subunit Model for Neuronal Responses in Macaque V1 , 2015, The Journal of Neuroscience.

[96]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[97]  Olivier Marre,et al.  Features and functions of nonlinear spatial integration by retinal ganglion cells , 2012, Journal of Physiology-Paris.

[98]  William Bialek,et al.  Maximally Informative “Stimulus Energies” in the Analysis of Neural Responses to Natural Signals , 2012, PloS one.

[99]  Jonathan W. Pillow,et al.  Spectral methods for neural characterization using generalized quadratic models , 2013, NIPS.

[100]  Liam Paninski,et al.  Fast inference in generalized linear models via expected log-likelihoods , 2013, Journal of Computational Neuroscience.

[101]  Kenneth D. Harris,et al.  Methods for predicting cortical UP and DOWN states from the phase of deep layer local field potentials , 2010, Journal of Computational Neuroscience.

[102]  R. Desimone,et al.  Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[103]  Julian J. Bussgang,et al.  Crosscorrelation functions of amplitude-distorted gaussian signals , 1952 .