Online inspection of 3D parts via a locally overlapping camera network

The raising standards in manufacturing demands reliable and fast industrial quality control mechanisms. This paper proposes an accurate, yet easy to install multi-view, close range optical metrology system, which is suited to online operation. The system is composed of multiple static, locally overlapping cameras forming a network. Initially, these cameras are calibrated to obtain a global coordinate frame. During run-time, the measurements are performed via a novel geometry extraction techniques coupled with an elegant projective registration framework, where 3D to 2D fitting energies are minimized. Finally, a non-linear regression is carried out to compensate for the uncontrollable errors. We apply our pipeline to inspect various geometrical structures found on automobile parts. While presenting the implementation of an involved 3D metrology system, we also demonstrate that the resulting inspection is as accurate as 0.2 mm, repeatable and much faster, compared to the existing methods such as coordinate measurement machines (CMM) or ATOS.

[1]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[2]  ZhangZhengyou A Flexible New Technique for Camera Calibration , 2000 .

[3]  Andrew W. Fitzgibbon Robust registration of 2D and 3D point sets , 2003, Image Vis. Comput..

[4]  Joaquim Salvi,et al.  The SLAM problem: a survey , 2008, CCIA.

[5]  Markus Ulrich,et al.  Combining Scale-Space and Similarity-Based Aspect Graphs for Fast 3D Object Recognition , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Daniel S. Sawyer,et al.  The Validation of CMM Task Specific Measurement Uncertainty Software | NIST , 2003 .

[7]  F. Bethmann,et al.  COMPARISON AND VERIFICATION OF OPTICAL 3-D SURFACE MEASUREMENT SYSTEMS , 2008 .

[8]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[9]  Michael G. Strintzis,et al.  Stereo vision system for precision dimensional inspection of 3D holes , 2003, Machine Vision and Applications.

[10]  Reinhard Klein,et al.  Easy-to-use calibration of multiple-camera setups , 2007, ICVS 2007.

[11]  N. Mostofi,et al.  USING VISION METROLOGY SYSTEM FOR QUALITY CONTROL IN AUTOMOTIVE INDUSTRIES , 2012 .

[12]  Heikki Kälviäinen,et al.  Optical 3 D Measurement in the Quality Assurance of Formed Sheet Metal Parts , 2003 .

[13]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Benjamin B. Kimia,et al.  No Grouping Left Behind: From Edges to Curve Fragments , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[15]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[16]  Gyula Hermann,et al.  Geometric Error Correction in Coordinate Measurement , 2006 .

[17]  Heinrich Niemann,et al.  A refined ICP algorithm for robust 3-D correspondence estimation , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[18]  Thomas Luhmann,et al.  The Programmable Optical 3D Measuring System POM-Applications and Performance , 2010 .

[19]  Andrea Torsello,et al.  A Robust Multi-camera 3D Ellipse Fitting for Contactless Measurements , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[20]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[21]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[22]  Silvio Savarese,et al.  Multi-view Object Categorization and Pose Estimation , 2010, Computer Vision: Detection, Recognition and Reconstruction.

[23]  Janne Heikkilä,et al.  Geometric Camera Calibration Using Circular Control Points , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Carsten Steger,et al.  An Unbiased Detector of Curvilinear Structures , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  S. Sartori,et al.  Geometric Error Measurement and Compensation of Machines , 1995 .

[26]  Valtteri Tuominen,et al.  Cost Modeling of Inspection Strategies in Automotive Quality Control , 2012 .

[27]  Robert Laganière,et al.  Matching with epipolar gradient features and edge transfer , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[28]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[29]  V. Uffenkamp State of the Art of High Precision Industrial Photogrammetry , 1993 .

[30]  Peter Meer,et al.  ROBUST TECHNIQUES FOR COMPUTER VISION , 2004 .

[31]  Marc Pollefeys,et al.  CamOdoCal: Automatic intrinsic and extrinsic calibration of a rig with multiple generic cameras and odometry , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Tae-Kyun Kim,et al.  Latent-Class Hough Forests for 3D Object Detection and Pose Estimation , 2014, ECCV.

[33]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[34]  Nicholas Ayache,et al.  Trinocular Stereo Vision for Robotics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Nick Van Gestel,et al.  Determining Measurement Uncertainties of Feature Measurements on CMMs (Bepalen van meetonzekerheden bij het meten van vormelementen met CMMs) , 2011 .

[36]  Thomas Luhmann,et al.  Close range photogrammetry for industrial applications , 2010 .

[37]  Gyula Hermann Volumetric Error Correction in Coordinate Measurement , 2006 .