Behavior-Based Indoor Navigation

Ambience provides large amounts of heterogeneous data that can be used for diverse purposes, including indoor navigation in semi-structured environments. Indoor navigation is a very active research field due to its large number of possible applications: mobile guides for museums or other public buildings [36], office post delivering, assistance to people with disabilities and elderly people [34], etc. The idea of using indoor navigation techniques to develop mobile guides is not new. Among the pioneers, Polly, a mobile robot acting as a guide for the MIT AI Lab [35], and Minerva, an autonomous guide developed for the National Museum of American History in Washington [69], are well known. A particular case are mobile guides for blind people which experienced a notable interest in the last years [40]. Another interesting application field is devoted to smart wheelchairs, which are provided with navigation aids for people with severe motor restrictions [64,75]. All these applications share the need for a navigation system, even if its implementation may be different for each of them. For instance, the navigation system may act over the power stage of a smart wheelchair or may communicate with the user interface of a mobile navigation assistant in a museum. Evidently the implication of the user is different in each system, leading to diverse levels of human-system integration. Therefore, there are two key issues in the design of mobile guides: navigation strategy and user interface. Even if most of the mentioned systems use maps for navigation [36], there exist alternative, behavior-based systems, that use a procedural way to represent knowledge. Therefore, the selection of the approach not only conditions the navigational architecture but also the design of the human interface. This chapter analyzes alternatives for navigation models and focuses on how properties of the environment can be intelligently exploited for indoor navigation tasks. In addition, it describes, in detail, an illustrative example based on behavior decomposition. Its navigational characteristics and influence upon the human interface design are also discussed.

[1]  DANIEL CAGIGAS,et al.  Hierarchical Path Search with Partial Materialization of Costs for a Smart Wheelchair , 2004, J. Intell. Robotic Syst..

[2]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  Jonathan H. Connell,et al.  Minimalist mobile robotics - a colony-style architecture for an artificial creature , 1990, Perspectives in artificial intelligence.

[5]  A. Bennett,et al.  Do animals have cognitive maps? , 1996, The Journal of experimental biology.

[6]  Julio Rosenblatt,et al.  DAMN: a distributed architecture for mobile navigation , 1997, J. Exp. Theor. Artif. Intell..

[7]  Maja J. Matarić,et al.  Behavior-Based Systems: Key Properties and Implications , 1992 .

[8]  Erol Gelenbe Biologically inspired autonomous systems , 1997, Robotics Auton. Syst..

[9]  Y. Aloimonos Active Perception , 1993 .

[10]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[11]  Jean-Claude Latombe,et al.  Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other Artifacts , 1999, Int. J. Robotics Res..

[12]  Hobart R. Everett,et al.  Sensors for Mobile Robots , 1995 .

[13]  T Leo,et al.  A navigation system for increasing the autonomy and the security of powered wheelchairs. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[14]  Tom Duckett,et al.  Performance Comparison of Landmark Recognition Systems for Navigating Mobile Robots , 2000, AAAI/IAAI.

[15]  Richard T. Vaughan,et al.  The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems , 2003 .

[16]  E. Gat On Three-Layer Architectures , 1997 .

[17]  Hanspeter A. Mallot,et al.  Biomimetic robot navigation , 2000, Robotics Auton. Syst..

[18]  Julio Abascal,et al.  Interfacing users with very severe mobility restrictions with a semi-automatically guided wheelchair , 1999, SIGC.

[19]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[20]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[21]  Keith Cheverst,et al.  A Survey of Map-based Mobile Guides , 2005 .

[22]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[23]  Wolfram Burgard,et al.  Particle Filters for Mobile Robot Localization , 2001, Sequential Monte Carlo Methods in Practice.

[24]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[25]  Vibhu O. Mittal,et al.  Assistive Technology and Artificial Intelligence , 1998, Lecture Notes in Computer Science.

[26]  Maja J. Mataric,et al.  Integration of representation into goal-driven behavior-based robots , 1992, IEEE Trans. Robotics Autom..

[27]  Gerhard Lakemeyer,et al.  Exploring artificial intelligence in the new millennium , 2003 .

[28]  Jean-Arcady Meyer,et al.  BIOLOGICALLY BASED ARTIFICIAL NAVIGATION SYSTEMS: REVIEW AND PROSPECTS , 1997, Progress in Neurobiology.

[29]  Hobart R. Everett,et al.  Sensors for Mobile Robots: Theory and Application , 1995 .

[30]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[31]  John J. Leonard,et al.  Directed Sonar Sensing for Mobile Robot Navigation , 1992 .

[32]  Sebastian Thrun,et al.  Decentralized Sensor Fusion with Distributed Particle Filters , 2002, UAI.

[33]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[34]  Constantine Stephanidis,et al.  Universal Access in HCI , 2001 .

[35]  Fabio Paternò,et al.  Human Computer Interaction with Mobile Devices , 2002, Lecture Notes in Computer Science.

[36]  Ron Kohavi,et al.  Data Mining Using MLC a Machine Learning Library in C++ , 1996, Int. J. Artif. Intell. Tools.

[37]  Rodney A. Brooks,et al.  The role of learning in autonomous robots , 1991, COLT '91.

[38]  Nils J. Nilsson,et al.  Shakey the Robot , 1984 .

[39]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[40]  Ian Horswill,et al.  Polly: A Vision-Based Artificial Agent , 1993, AAAI.

[41]  Jie Yang,et al.  Sensor fusion using Dempster-Shafer theory [for context-aware HCI] , 2002, IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276).

[42]  Noel E. Sharkey,et al.  The new wave in robot learning , 1997, Robotics Auton. Syst..

[43]  Rodney A. Brooks PLANNING IS JUST A WAY OF AVOIDING FIGURING OUT WHAT TO DO NEXT , 1987 .

[44]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[45]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[46]  Jean-Arcady Meyer,et al.  From natural to artificial life: Biomimetic mechanisms in animat designs , 1997, Robotics Auton. Syst..

[47]  Maja J. Matarić,et al.  A Distributed Model for Mobile Robot Environment-Learning and Navigation , 1990 .

[48]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[49]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[50]  Héctor H. González-Baños,et al.  Navigation Strategies for Exploring Indoor Environments , 2002, Int. J. Robotics Res..

[51]  Robin R. Murphy,et al.  Artificial intelligence and mobile robots: case studies of successful robot systems , 1998 .

[52]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[53]  Dana H. Ballard,et al.  Principles of animate vision , 1992, CVGIP Image Underst..

[54]  Hans P. Moravec,et al.  Robot Evidence Grids. , 1996 .

[55]  I. Placencia Porrero,et al.  Improving the Quality of Life for the European Citizen: Technology for Inclusive Design and Equality , 1998 .

[56]  B. Webb,et al.  Can robots make good models of biological behaviour? , 2001, Behavioral and Brain Sciences.

[57]  Sebastian Thrun,et al.  Learning Maps for Indoor Mobile Robot Navigation. , 1996 .

[58]  Alan C. Schultz,et al.  Mobile robot exploration and map-building with continuous localization , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[59]  Stephen A. Brewster,et al.  Using Landmarks to Support Older People in Navigation , 2004, Mobile HCI.

[60]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[61]  Basilio Sierra,et al.  Natural Landmark Based Navigation , 2004, Australian Conference on Artificial Intelligence.

[62]  Pattie Maes,et al.  The Dynamics of Action Selection , 1989, IJCAI.

[63]  Paolo Pirjanian,et al.  Behavior Coordination Mechanisms - State-of-the-art , 1999 .

[64]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Charles E. Thorpe,et al.  Path Relaxation: Path Planning for a Mobile Robot , 1984, AAAI.

[66]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[67]  Rodney A. Brooks,et al.  A robot that walks; emergent behaviors from a carefully evolved network , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[68]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[69]  Simon Kasif,et al.  A System for Induction of Oblique Decision Trees , 1994, J. Artif. Intell. Res..

[70]  Jonathan H. Connell,et al.  Chapter 2 – Architecture , 1990 .

[71]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[72]  Johann Borenstein,et al.  Sensor fusion for mobile robot dead-reckoning with a precision-calibrated fiber optic gyroscope , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[73]  Rodney A. Brooks,et al.  Asynchronous Distributed Control System For A Mobile Robot , 1987, Other Conferences.

[74]  Holly A. Yanco,et al.  Wheelesley: A Robotic Wheelchair System: Indoor Navigation and User Interface , 1998, Assistive Technology and Artificial Intelligence.

[75]  Luis Gardeazabal,et al.  Mobile Interface for a Smart Wheelchair , 2002, Mobile HCI.

[76]  John Nicholson,et al.  A Robotic Wayfinding System for the Visually Impaired , 2004, AAAI.

[77]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[78]  Tod S. Levitt,et al.  Qualitative Navigation for Mobile Robots , 1990, Artif. Intell..