Integrated fusion simulation with self-consistent core-pedestal coupling

Accurate prediction of fusion performance in present and future tokamaks requires taking into account the strong interplay between core transport, pedestal structure, current profile, and plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self-consistent solution to this strongly coupled problem has been developed. The workflow leverages state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal stability. Testing against a DIII-D discharge shows that the workflow is capable of robustly predicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the separatrix in a good agreement with the experiments. An example application is presented, showing self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario as functions of the pedestal density and ion effective charge Zeff.

[1]  Dennis G. Whyte,et al.  Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experimenta) , 2015 .

[2]  R. V. Budny,et al.  Comparisons of predicted plasma performance in ITER H-mode plasmas with various mixes of external heating , 2009 .

[3]  R. E. Waltz,et al.  The first transport code simulations using the trapped gyro-Landau-fluid model , 2008 .

[4]  C. Kessel,et al.  Integrated modelling for prediction of optimized ITER performance , 2011 .

[5]  T. L. Rhodes,et al.  Progress in GYRO validation studies of DIII-D H-mode plasmas , 2012 .

[6]  J. Candy,et al.  Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics , 2008 .

[7]  Jeff M. Candy,et al.  An Eulerian method for the solution of the multi-species drift-kinetic equation , 2009 .

[8]  C. Bourdelle,et al.  Ion temperature profile stiffness: non-linear gyrokinetic simulations and comparison with experiment , 2013, 1303.2217.

[9]  Jeff M. Candy,et al.  Tokamak profile prediction using direct gyrokinetic and neoclassical simulation , 2009 .

[10]  H. Wilson,et al.  Numerical studies of edge localized instabilities in tokamaks , 2002 .

[11]  J. Kinsey,et al.  A theory-based transport model with comprehensive physicsa) , 2006 .

[12]  P. B. Snyder,et al.  Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER , 2011 .

[13]  R. E. Waltz,et al.  Gyro-Landau fluid equations for trapped and passing particles , 2005 .

[14]  L. Lao,et al.  Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes , 2002 .

[15]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[16]  H. R. Wilson,et al.  A first-principles predictive model of the pedestal height and width: development, testing and ITER optimization with the EPED model , 2011 .

[17]  C. Kessel,et al.  Predictions of H-mode performance in ITER , 2008 .

[18]  Arnold H. Kritz,et al.  Predicting temperature and density profiles in tokamaks , 1998 .

[19]  E. A. Belli,et al.  Gyrokinetic Eigenmode Analysis of High-Beta Shaped Plasmas , 2010 .

[20]  R. E. Waltz,et al.  ITER predictions using the GYRO verified and experimentally validated trapped gyro-Landau fluid transport model , 2011 .

[21]  Arnold H. Kritz,et al.  Physics basis of Multi-Mode anomalous transport module , 2013 .

[22]  Arnold H. Kritz,et al.  Integrated predictive modelling simulations of burning plasma experiment designs , 2003 .

[23]  Maxim Umansky,et al.  Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation , 2007 .

[24]  T. Osborne,et al.  Edge stability of stationary ELM-suppressed regimes on DIII-D , 2008 .

[25]  Jerry M. Kinsey,et al.  BURNING PLASMA PROJECTIONS USING DRIFT WAVE TRANSPORT MODELS AND SCALINGS FOR THE H-MODE PEDESTAL , 2002 .

[26]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[27]  H. Doerk,et al.  Gyrokinetic studies of core turbulence features in ASDEX Upgrade H-mode plasmas , 2015 .

[28]  W. A. Peebles,et al.  L-mode validation studies of gyrokinetic turbulence simulations via multiscale and multifield turbulence measurements on the DIII-D tokamak , 2011 .

[29]  L. Lao,et al.  Variational moment solutions to the Grad–Shafranov equation , 1981 .

[30]  W. Houlberg,et al.  Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio , 1997 .

[31]  H. Koslowski,et al.  MHD stability analysis of small ELM regimes in JET , 2009 .

[32]  S. Wolfe,et al.  A new look at density limits in tokamaks , 1988 .

[33]  Jeff M. Candy,et al.  Full linearized Fokker–Planck collisions in neoclassical transport simulations , 2011 .

[34]  A. D. Turnbull,et al.  Integrated modeling applications for tokamak experiments with OMFIT , 2015 .

[35]  R. J. Groebner,et al.  Development and validation of a predictive model for the pedestal height , 2008 .

[36]  P. B. Snyder,et al.  External heating and current drive source requirements towards steady-state operation in ITER , 2014 .

[37]  P. B. Snyder,et al.  The EPED pedestal model and edge localized mode-suppressed regimes: Studies of quiescent H-mode and development of a model for edge localized mode suppression via resonant magnetic perturbations , 2012 .

[38]  G. Staebler,et al.  The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence , 2016 .

[39]  D. J. Campbell,et al.  Chapter 1: Overview and summary , 1999 .

[40]  Arnold H. Kritz,et al.  Fusion power production in International Thermonuclear Experimental Reactor baseline H-mode scenarios , 2015 .

[41]  J. Candy,et al.  Turbulent momentum transport due to neoclassical flows , 2015, 1506.00863.