Multiple Determinants of Whole and Regional Brain Volume among Terrestrial Carnivorans

Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion.

[1]  S. T. Sakai,et al.  Brain Size and Social Complexity: A Computed Tomography Study in Hyaenidae , 2011, Brain, Behavior and Evolution.

[2]  V. Weisbecker,et al.  Brain size, life history, and metabolism at the marsupial/placental dichotomy , 2010, Proceedings of the National Academy of Sciences.

[3]  J. Finarelli Does encephalization correlate with life history or metabolic rate in Carnivora? , 2010, Biology Letters.

[4]  Campbell O. Webb,et al.  Picante: R tools for integrating phylogenies and ecology , 2010, Bioinform..

[5]  Robin I. M. Dunbar,et al.  Social bonds in birds are associated with brain size and contingent on the correlated evolution of life‐history and increased parental investment , 2010 .

[6]  M. Montaudon,et al.  On two equations about brain volume, cranial capacity and age , 2010, Surgical and Radiologic Anatomy.

[7]  Liam J. Revell,et al.  Size-Correction and Principal Components for Interspecific Comparative Studies , 2009, Evolution; international journal of organic evolution.

[8]  C. V. van Schaik,et al.  The Expensive Brain: a framework for explaining evolutionary changes in brain size. , 2009, Journal of human evolution.

[9]  Paul H. Harvey,et al.  Primates, brains and ecology , 2009 .

[10]  T. Clutton‐Brock,et al.  Primate ecology and social organization , 2009 .

[11]  J. de Magalhães,et al.  A database of vertebrate longevity records and their relation to other life‐history traits , 2009, Journal of evolutionary biology.

[12]  K. Holekamp,et al.  Post-weaning maternal effects and the evolution of female dominance in the spotted hyena , 2009, Proceedings of the Royal Society B: Biological Sciences.

[13]  J. J. Flynn,et al.  Brain-size evolution and sociality in Carnivora , 2009, Proceedings of the National Academy of Sciences.

[14]  L. Lefebvre,et al.  The comparative approach and brain-behaviour relationships: a tool for understanding tool use. , 2009, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[15]  P. Ebinger,et al.  Cephalisation bei Viverridae, Hyaenidae, Procyonidae und Ursidae1 , 2009 .

[16]  A. Lister,et al.  Insular dwarfism in hippos and a model for brain size reduction in Homo floresiensis , 2009, Nature.

[17]  C. V. van Schaik,et al.  Why are there so few smart mammals (but so many smart birds)? , 2009, Biology Letters.

[18]  K. Safi,et al.  Comparative studies of brain evolution: a critical insight from the Chiroptera , 2009, Biological reviews of the Cambridge Philosophical Society.

[19]  L. Lefebvre,et al.  Brains, Lifestyles and Cognition: Are There General Trends? , 2008, Brain, Behavior and Evolution.

[20]  Robin I. M. Dunbar,et al.  EVIDENCE FOR COEVOLUTION OF SOCIALITY AND RELATIVE BRAIN SIZE IN THREE ORDERS OF MAMMALS , 2007, Evolution; international journal of organic evolution.

[21]  J. Wild,et al.  Evolution of Brain Size in the Palaeognath Lineage, with an Emphasis on New Zealand Ratites , 2007, Brain, Behavior and Evolution.

[22]  Robin I. M. Dunbar,et al.  The evolution of the social brain: anthropoid primates contrast with other vertebrates , 2007, Proceedings of the Royal Society B: Biological Sciences.

[23]  M. Oli,et al.  Fast and slow life histories of mammals , 2007 .

[24]  Barbara R. Holland,et al.  Analysis of Phylogenetics and Evolution with R , 2007 .

[25]  S. T. Sakai,et al.  The Spotted Hyena (Crocuta crocuta) as a Model System for Study of the Evolution of Intelligence , 2007 .

[26]  Robin I. M. Dunbar,et al.  Understanding primate brain evolution , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  Amanda M Seed,et al.  Cognitive adaptations of social bonding in birds , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  J. L. Gittleman,et al.  The Fast‐Slow Continuum in Mammalian Life History: An Empirical Reevaluation , 2007, The American Naturalist.

[29]  Kay E. Holekamp,et al.  Questioning the social intelligence hypothesis , 2007, Trends in Cognitive Sciences.

[30]  J. Finarelli,et al.  ESTIMATION OF ENDOCRANIAL VOLUME THROUGH THE USE OF EXTERNAL SKULL MEASURES IN THE CARNIVORA (MAMMALIA) , 2006 .

[31]  R. Wayne,et al.  Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. , 2006, Molecular phylogenetics and evolution.

[32]  Agostinho Antunes,et al.  The Late Miocene Radiation of Modern Felidae: A Genetic Assessment , 2006, Science.

[33]  G. Roth,et al.  Evolution of the brain and intelligence , 2005, Trends in Cognitive Sciences.

[34]  Madan K. Oli,et al.  The fast–slow continuum and mammalian life-history patterns: an empirical evaluation , 2004 .

[35]  K. Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[36]  J. L. Gittleman,et al.  The life history legacy of evolutionary body size change in carnivores , 2003, Journal of evolutionary biology.

[37]  Robin I. M. Dunbar The Social Brain: Mind, Language, and Society in Evolutionary Perspective , 2003 .

[38]  Robin I. M. Dunbar,et al.  Evolution of the Social Brain , 2003, Science.

[39]  T. Garland,et al.  TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE , 2003, Evolution; international journal of organic evolution.

[40]  J. Fish,et al.  Dietary constraints on encephalization in primates. , 2003, American journal of physical anthropology.

[41]  R. Deaner,et al.  1. Life History and Cognitive Evolution in Primates , 2003 .

[42]  Peter L. Tyack,et al.  Animal social complexity : intelligence, culture, and individualized societies , 2003 .

[43]  B. Finlay,et al.  Developmental structure in brain evolution , 2001, Behavioral and Brain Sciences.

[44]  R. Adolphs The neurobiology of social cognition , 2001, Current Opinion in Neurobiology.

[45]  S. Pellis,et al.  The relative importance of body size, phylogeny, locomotion, and diet in the evolution of forelimb dexterity in fissiped carnivores (Carnivora) , 2000 .

[46]  Anthony R. Ives,et al.  Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods , 2000, The American Naturalist.

[47]  R. Deaner,et al.  Comparative Tests of Primate Cognition: Different Scaling Methods Produce Different Results , 2000, Brain, Behavior and Evolution.

[48]  J. Losos Uncertainty in the reconstruction of ancestral character states and limitations on the use of phylogenetic comparative methods , 1999, Animal Behaviour.

[49]  Ian Q. Whishaw,et al.  Brain Size Is Not Correlated with Forelimb Dexterity in Fissiped Carnivores (Carnivora): A Comparative Test of the Principle of Proper Mass , 1999, Brain, Behavior and Evolution.

[50]  M. Pagel The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies , 1999 .

[51]  J. L. Gittleman,et al.  Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) , 1999, Biological reviews of the Cambridge Philosophical Society.

[52]  R. Deaner,et al.  How quickly do brains catch up with bodies? A comparative method for detecting evolutionary lag , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[53]  T. Garland,et al.  Effects of branch length errors on the performance of phylogenetically independent contrasts. , 1998, Systematic biology.

[54]  R. Barton Visual specialization and brain evolution in primates , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  H. Hofer,et al.  Hyaenas: Status Survey And Conservation Action Plan , 1998 .

[56]  T. F. Hansen,et al.  Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data , 1997, The American Naturalist.

[57]  B. Finlay,et al.  Linked regularities in the development and evolution of mammalian brains. , 1995, Science.

[58]  L. Aiello,et al.  The Expensive-Tissue Hypothesis: The Brain and the Digestive System in Human and Primate Evolution , 1995, Current Anthropology.

[59]  G. Mitchell Coalitions and Alliances in Humans and Other Animals , 1993, Politics and the Life Sciences.

[60]  F. Waal,et al.  Coalitions and alliances in humans and other animals , 1993 .

[61]  S. Healy,et al.  Food storing and the hippocampus in corvids: amount and volume are correlated , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  M. Pagel A method for the analysis of comparative data , 1992 .

[63]  Robin I. M. Dunbar Neocortex size as a constraint on group size in primates , 1992 .

[64]  Mark Kot,et al.  Adaptation: Statistics and a Null Model for Estimating Phylogenetic Effects , 1990 .

[65]  T. Deacon Rethinking mammalian brain evolution , 1990 .

[66]  Paul H. Harvey,et al.  Living fast and dying young: A comparative analysis of life‐history variation among mammals , 1990 .

[67]  R. Byrne,et al.  Machiavellian intelligence : social expertise and the evolution of intellect in monkeys, apes, and humans , 1990 .

[68]  A. Grafen The phylogenetic regression. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[69]  Paul H. Harvey,et al.  Life history differences among the eutherian radiations , 1989 .

[70]  J. Gaillard,et al.  An analysis of demographic tactics in birds and mammals , 1989 .

[71]  J. L. Gittleman Carnivore brain size, behavioral ecology and phylogeny , 1986 .

[72]  W. Atchley,et al.  Genetics of Growth Predict Patterns of Brain-Size Evolution , 1985, Science.

[73]  Paul H. Harvey,et al.  Patterns of mortality and age at first reproduction in natural populations of mammals , 1985, Nature.

[74]  H. J. Jerison Animal intelligence as encephalization. , 1985, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[75]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[76]  M. Cynader,et al.  Somatosensory cortical map changes following digit amputation in adult monkeys , 1984, The Journal of comparative neurology.

[77]  S. Stearns The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals , 1983 .

[78]  S. T. Sakai The thalamic connectivity of the primary motor cortex (MI) in the raccoon , 1982, The Journal of comparative neurology.

[79]  R. Lande QUANTITATIVE GENETIC ANALYSIS OF MULTIVARIATE EVOLUTION, APPLIED TO BRAIN:BODY SIZE ALLOMETRY , 1979, Evolution; international journal of organic evolution.

[80]  J. Eisenberg,et al.  RELATIVE BRAIN SIZE AND FEEDING STRATEGIES IN THE CHIROPTERA , 1978, Evolution; international journal of organic evolution.

[81]  Sue Taylor Parker,et al.  Object manipulation, tool use and sensorimotor intelligence as feeding adaptations in cebus monkeys and great apes , 1977 .

[82]  R. Hinde,et al.  Growing Points in Ethology , 1976 .

[83]  C. Guggisberg,et al.  Wild Cats of the World , 1975 .

[84]  G. Sacher,et al.  Relation of Gestation Time to Brain Weight for Placental Mammals: Implications for the Theory of Vertebrate Growth , 1974, The American Naturalist.

[85]  L. Radinsky OUTLINES OF CANID AND FELID BRAIN EVOLUTION * , 1969 .

[86]  W. Welker,et al.  Physiological significance of sulci in somatic sensory cerebral cortex in mammals of the family procyonidae , 1963, The Journal of comparative neurology.

[87]  R. Young,et al.  The influence of cranial contents on postnatal growth of the skull in the rat. , 1959, The American journal of anatomy.

[88]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.

[89]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[90]  G. 6. Rska FUNCTIONAL ORGANIZATION OF CORTICAL MOTOR AREAS IN ADULT DOGS AND PUPPIES , 2010 .

[91]  K. Holekamp,et al.  Intraspecific Variation in the Behavioral Ecology of a Tropical Carnivore, the Spotted Hyena , 2010 .

[92]  M. Changizi,et al.  Brain Scaling Laws , 2009 .

[93]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[94]  G. Striedter Principles of brain evolution. , 2005 .

[95]  R. Kays,et al.  Walker's carnivores of the world , 2005 .

[96]  J. Donoghue,et al.  Organization of the forelimb area in squirrel monkey motor cortex: representation of digit, wrist, and elbow muscles , 2004, Experimental Brain Research.

[97]  J. Nelson,et al.  Can endocranial volume be used as an estimate of brain size in birds , 2002 .

[98]  Robin I. M. Dunbar,et al.  Neocortex size predicts group size in carnivores and some insectivores , 1998 .

[99]  Robert M. Young,et al.  Mind, Brain and Adaptation in the Nineteenth Century , 1994 .

[100]  J Allman,et al.  Brain weight and life-span in primate species. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[101]  J. L. Gittleman,et al.  On Comparing Comparative Methods , 1992 .

[102]  M. Pagel,et al.  The comparative method in evolutionary biology , 1991 .

[103]  S. Gould Bully for Brontosaurus , 1991 .

[104]  R. Martin,et al.  Brain Size Allometry Ontogeny and Phylogeny , 1985 .

[105]  William L. Jungers,et al.  Size and Scaling in Primate Biology , 1985, Advances in Primatology.

[106]  Stephen C. Steams The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals , 1983 .

[107]  Jean Piaget,et al.  Behaviour and Evolution , 1979 .

[108]  N. Humphrey The Social Function of Intellect , 1976 .

[109]  S. Gould,et al.  Allometry in primates, with emphasis on scaling and the evolution of the brain. , 1975, Contributions to primatology.

[110]  L. Mech,et al.  The Wolf: The Ecology and Behavior of an Endangered Species , 1970 .

[111]  M. Bitterman THE EVOLUTION OF INTELLIGENCE. , 1965, Scientific American.

[112]  A. Iwaniuk,et al.  Opus: University of Bath Online Publication Store Evolutionary Divergence in Brain Size between Migratory and Resident Birds , 2022 .