Sparse Packetized Predictive Control for Networked Control Over Erasure Channels

We study feedback control over erasure channels with packet-dropouts. To achieve robustness with respect to packet-dropouts, the controller transmits data packets containing plant input predictions, which minimize a finite horizon cost function. To reduce the data size of packets, we propose to adopt sparsity-promoting optimizations, namely, l1 - l2 and l2-constrained l0 optimizations, for which efficient algorithms exist. We show how to design the tuning parameters to ensure (practical) stability of the resulting feedback control systems when the number of consecutive packet-dropouts is bounded.

[1]  Daniel E. Quevedo,et al.  Compressive sampling for networked feedback control , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[2]  Daniel E. Quevedo,et al.  Design of multiple actuator-link control systems with packet dropouts , 2008 .

[3]  Tamer Basar,et al.  Optimal control with limited controls , 2006, 2006 American Control Conference.

[4]  Daniel E. Quevedo,et al.  Sparse command generator for remote control , 2011, 2011 9th IEEE International Conference on Control and Automation (ICCA).

[5]  Daniel E. Quevedo,et al.  Packetized Predictive Control of Stochastic Systems Over Bit-Rate Limited Channels With Packet Loss , 2011, IEEE Transactions on Automatic Control.

[6]  Toshiyuki Tanaka,et al.  A User's Guide to Compressed Sensing for Communications Systems , 2013, IEICE Trans. Commun..

[7]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[8]  Daniel E. Quevedo,et al.  Sparse Representations for Packetized Predictive Networked Control , 2013, ArXiv.

[9]  Daniel E. Quevedo,et al.  Input-to-State Stability of Packetized Predictive Control Over Unreliable Networks Affected by Packet-Dropouts , 2011, IEEE Transactions on Automatic Control.

[10]  Ling Shi,et al.  Finite Horizon LQR Control With Limited Controller-System Communication , 2013, IEEE Transactions on Automatic Control.

[11]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[12]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[13]  Tyrone L. Vincent,et al.  On the observability of linear systems from random, compressive measurements , 2010, 49th IEEE Conference on Decision and Control (CDC).

[14]  Jean-Jacques Fuchs,et al.  On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.

[15]  Jean-Jacques Fuchs,et al.  On the application of the global matched filter to DOA estimation with uniform circular arrays , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[16]  C.C. White,et al.  Dynamic programming and stochastic control , 1978, Proceedings of the IEEE.

[17]  Frank Allgöwer,et al.  ℓ0-System Gain and ℓ1-Optimal Control , 2011 .

[18]  Ekaterina A. Kostina,et al.  Parametric optimal control problems with weighted L1-norm in the cost function , 2010, Automatic Control and Computer Sciences.

[19]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[20]  Graham C. Goodwin,et al.  A moving horizon approach to Networked Control system design , 2004, IEEE Transactions on Automatic Control.

[21]  Tamer Basar,et al.  Sparsity based feedback design: A new paradigm in opportunistic sensing , 2011, Proceedings of the 2011 American Control Conference.

[22]  Nathan D. Shemonski,et al.  Limiting controls in vector state space systems , 2012 .

[23]  Daniel E. Quevedo,et al.  Sparsely-Packetized Predictive Control by Orthogonal Matching Pursuit , 2013, ArXiv.

[24]  Jan M. Maciejowski,et al.  ℓasso MPC: Smart regulation of over-actuated systems , 2012, 2012 American Control Conference (ACC).

[25]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[26]  M. Fardad,et al.  Sparsity-promoting optimal control for a class of distributed systems , 2011, Proceedings of the 2011 American Control Conference.

[27]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[28]  Lionel Mathelin,et al.  A compressed-sensing approach for closed-loop optimal control of nonlinear systems , 2012 .

[29]  Stephen P. Boyd,et al.  Trajectory generation using sum-of-norms regularization , 2010, 49th IEEE Conference on Decision and Control (CDC).

[30]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[31]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[32]  Alberto Bemporad,et al.  Predictive control of teleoperated constrained systems with unbounded communication delays , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[33]  Daniel E. Quevedo,et al.  Packetized predictive control for rate-limited networks via sparse representation , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[34]  Takahiro Matsuda,et al.  Compressive Sampling for Remote Control Systems , 2012, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[35]  Daniel E. Quevedo,et al.  Robust stability of packetized predictive control of nonlinear systems with disturbances and Markovian packet losses , 2012, Autom..