Control and Synchronization of Neuron Ensembles

Synchronization of oscillations is a phenomenon prevalent in natural, social, and engineering systems. Controlling synchronization of oscillating systems is motivated by a wide range of applications from surgical treatment of neurological diseases to the design of neurocomputers. In this paper, we study the control of an ensemble of uncoupled neuron oscillators described by phase models. We examine controllability of such a neuron ensemble for various phase models and, furthermore, study the related optimal control problems. In particular, by employing Pontryagin's maximum principle, we analytically derive optimal controls for spiking single- and two-neuron systems, and analyze the applicability of the latter to an ensemble system. Finally, we present a robust computational method for optimal control of spiking neurons based on pseudospectral approximations. The methodology developed here is universal to the control of general nonlinear phase oscillators.

[1]  Andreas Kupsch,et al.  Deep brain stimulation in dystonia , 2003, Journal of Neurology.

[2]  Leon Glass,et al.  Cardiac arrhythmias and circle maps-A classical problem. , 1991, Chaos.

[3]  Eric Shea-Brown,et al.  On the Phase Reduction and Response Dynamics of Neural Oscillator Populations , 2004, Neural Computation.

[4]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[5]  G. BARD Beyond . a pacemaker ’ s entrainment limit : phase walk-through , .

[6]  Jr-Shin Li,et al.  Optimal Control of Inhomogeneous Ensembles , 2011, IEEE Transactions on Automatic Control.

[7]  Bard Ermentrout,et al.  Type I Membranes, Phase Resetting Curves, and Synchrony , 1996, Neural Computation.

[8]  R. Brockett Nonlinear systems and differential geometry , 1976, Proceedings of the IEEE.

[9]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[10]  N. Khaneja,et al.  Control of inhomogeneous quantum ensembles , 2006 .

[11]  Frank C. Hoppensteadt,et al.  Synchronization of MEMS resonators and mechanical neurocomputing , 2001 .

[12]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[13]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[14]  Jr-Shin Li,et al.  Optimal Asymptotic Entrainment of Phase-Reduced Oscillators , 2011, ArXiv.

[15]  Jr-Shin Li,et al.  Optimal design of minimum-power stimuli for phase models of neuron oscillators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  John A. White,et al.  Beyond Two-Cell Networks: Experimental Measurement of Neuronal Responses to Multiple Synaptic Inputs , 2005, Journal of Computational Neuroscience.

[17]  Jr-Shin Li,et al.  Optimal pulse design in quantum control: A unified computational method , 2011, Proceedings of the National Academy of Sciences.

[18]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[19]  J. Hindmarsh,et al.  The assembly of ionic currents in a thalamic neuron III. The seven-dimensional model , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[20]  Justin Ruths,et al.  Convergence of a pseudospectral method for optimal control of complex dynamical systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[21]  J. L. Hudson,et al.  Synchronization engineering: tuning the phase relationship between dissimilar oscillators using nonlinear feedback , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[23]  Jr-Shin Li,et al.  Constrained charge-balanced minimum-power controls for spiking neuron oscillators , 2011, Syst. Control. Lett..

[24]  John L. Hudson,et al.  Control of Complex Dynamics with Time-Delayed Feedback in Populations of Chemical Oscillators: Desynchronization and Clustering , 2008 .

[25]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[26]  Hoppensteadt,et al.  Synchronization of laser oscillators, associative memory, and optical neurocomputing , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  J. Hindmarsh,et al.  The assembly of ionic currents in a thalamic neuron I. The three-dimensional model , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[28]  Navin Khaneja,et al.  Problems in Control of Quantum Systems , 2012 .

[29]  Jr-Shin Li,et al.  Ensemble Control of Bloch Equations , 2009, IEEE Transactions on Automatic Control.

[30]  Héctor J. Sussmann,et al.  Time-optimal control in the plane , 1982 .

[31]  Jr-Shin Li,et al.  Ensemble Control of Finite-Dimensional Time-Varying Linear Systems , 2008, IEEE Transactions on Automatic Control.

[32]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[33]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[34]  István Z Kiss,et al.  Predicting mutual entrainment of oscillators with experiment-based phase models. , 2005, Physical review letters.

[35]  James P. Keener,et al.  Mathematical physiology , 1998 .

[36]  Ingo Fischer,et al.  Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication , 2000 .

[37]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[38]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[39]  I. Michael Ross,et al.  Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .

[40]  Takahiro Harada,et al.  Optimal waveform for the entrainment of a weakly forced oscillator. , 2010, Physical review letters.

[41]  Heinz Schättler,et al.  Minimum-Time Frictionless Atom Cooling in Harmonic Traps , 2010, SIAM J. Control. Optim..

[42]  Ali Nabi,et al.  CHARGE-BALANCED SPIKE TIMING CONTROL FOR PHASE MODELS OF SPIKING NEURONS , 2010 .

[43]  T Kano,et al.  Control of individual phase relationship between coupled oscillators using multilinear feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[45]  N. Lloyd,et al.  ALMOST PERIODIC FUNCTIONS AND DIFFERENTIAL EQUATIONS , 1984 .

[46]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .

[47]  S. Shankar Sastry,et al.  The Structure of Optimal Controls for a Steering Problem , 1992 .

[48]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[49]  G. Kraepelin,et al.  A. T. Winfree, The Geometry of Biological Time (Biomathematics, Vol.8). 530 S., 290 Abb. Berlin‐Heidelberg‐New‐York 1980. Springer‐Verlag. DM 59,50 , 1981 .

[50]  Ali Nabi,et al.  Single input optimal control for globally coupled neuron networks , 2011, Journal of neural engineering.

[51]  A. Krener A Generalization of Chow’s Theorem and the Bang-Bang Theorem to Nonlinear Control Problems , 1974 .

[52]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[53]  A. Isidori Nonlinear Control Systems , 1985 .

[54]  B. M. Fulk MATH , 1992 .

[55]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[56]  Jr-Shin Li,et al.  Constrained minimum-power control of spiking neuron oscillators , 2011, IEEE Conference on Decision and Control and European Control Conference.

[57]  Ali Nabi,et al.  Charge-Balanced Optimal Inputs for Phase Models of Spiking Neurons , 2009 .

[58]  Hiroshi Kori,et al.  Engineering Complex Dynamical Structures: Sequential Patterns and Desynchronization , 2007, Science.

[59]  Hanson Fe Comparative studies of firefly pacemakers. , 1978 .

[60]  P. Ashwin,et al.  The dynamics ofn weakly coupled identical oscillators , 1992 .

[61]  W. Marsden I and J , 2012 .

[62]  J. Gorman,et al.  Feedback Control of MEMS to Atoms , 2012 .

[63]  F. Hanson Comparative studies of firefly pacemakers. , 1978, Federation proceedings.

[64]  A. Benabid,et al.  Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus , 1991, The Lancet.

[65]  A. Winfree The geometry of biological time , 1991 .

[66]  Adilson E. Motter,et al.  Spontaneous Reaction Silencing in Metabolic Optimization , 2008, PLoS Comput. Biol..

[67]  Kevin M. Lynch,et al.  Recurrence, controllability, and stabilization of juggling , 2001, IEEE Trans. Robotics Autom..

[68]  Jr-Shin Li,et al.  Optimal entrainment of neural oscillator ensembles , 2012, Journal of neural engineering.

[69]  Justin Ruths,et al.  A multidimensional pseudospectral method for optimal control of quantum ensembles. , 2011, The Journal of chemical physics.

[70]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[71]  H. Sussmann The Structure of Time-Optimal Trajectories for Single-Input Systems in the Plane: the C , 1987 .

[72]  Robert J Butera,et al.  Neuronal oscillators in aplysia californica that demonstrate weak coupling in vitro. , 2005, Physical review letters.

[73]  Eric T. Shea-Brown,et al.  Optimal Inputs for Phase Models of Spiking Neurons , 2006 .