Control and disturbances compensation in underactuated robotic systems using the derivative-free nonlinear Kalman filter

Robotica / FirstView Article / August 2016, pp 1 25 DOI: 10.1017/S0263574715000776, Published online: 02 October 2015 Link to this article: http://journals.cambridge.org/abstract_S0263574715000776 How to cite this article: Gerasimos G. Rigatos Control and disturbances compensation in underactuated robotic systems using the derivative-free nonlinear Kalman lter. Robotica, Available on CJO 2015 doi:10.1017/S0263574715000776 Request Permissions : Click here

[1]  Sunil K. Agrawal,et al.  Differential flatness of a class of n—DOF planar manipulators driven by an arbitrary number of actuators , 2013, 2013 European Control Conference (ECC).

[2]  Xia Hong,et al.  Adaptive Modelling, Estimation and Fusion from Data , 2002, Advanced Information Processing.

[3]  P. Siano,et al.  PMSG sensorless control with the use of the derivative-free nonlinear Kalman filter , 2013, 2013 International Conference on Clean Electrical Power (ICCEP).

[4]  Marcia K. O'Malley,et al.  Disturbance-Observer-Based Force Estimation for Haptic Feedback , 2011 .

[5]  Simon X. Yang,et al.  Comprehensive Unified Control Strategy for Underactuated Two-Link Manipulators , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  E. Kamen,et al.  Introduction to Optimal Estimation , 1999 .

[7]  Liang Ding,et al.  Adaptive motion control of wheeled mobile robot with unknown slippage , 2014, Int. J. Control.

[8]  Peter J. Gawthrop,et al.  A nonlinear disturbance observer for robotic manipulators , 2000, IEEE Trans. Ind. Electron..

[9]  Gerasimos G. Rigatos,et al.  A Derivative-Free Kalman Filtering Approach to State Estimation-Based Control of Nonlinear Systems , 2012, IEEE Transactions on Industrial Electronics.

[10]  Oussama Khatib,et al.  Real-time adaptive control for haptic telemanipulation with Kalman active observers , 2006, IEEE Transactions on Robotics.

[11]  Vivek Sangwan,et al.  Differential Flatness of a Class of $n$-DOF Planar Manipulators Driven by 1 or 2 Actuators , 2010, IEEE Transactions on Automatic Control.

[12]  Gerasimos G. Rigatos,et al.  Nonlinear Kalman Filters and Particle Filters for integrated navigation of unmanned aerial vehicles , 2012, Robotics Auton. Syst..

[13]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[14]  Brigitte d'Andréa-Novel,et al.  Flatness-Based Vehicle Steering Control Strategy With SDRE Feedback Gains Tuned Via a Sensitivity Approach , 2007, IEEE Transactions on Control Systems Technology.

[15]  Vivek Sangwan,et al.  Differentially Flat Designs of Underactuated Open-Chain Planar Robots , 2008, IEEE Transactions on Robotics.

[16]  Rui Cortesão,et al.  On Kalman Active Observers , 2007, J. Intell. Robotic Syst..

[17]  César Torres,et al.  Stable optimal control applied to a cylindrical robotic arm , 2014, Neural Computing and Applications.

[18]  T. Başar,et al.  IEEE Decision and Control Conference Sydney , Australia , Dec 2000 H ∞-Optimal Tracking Control Techniques for Nonlinear Underactuated Systems , 2006 .

[19]  Tatsuo Narikiyo,et al.  Control of a class of underactuated mechanical systems , 2008 .

[20]  Hugues Mounier,et al.  Tracking Control and π-Freeness of Infinite Dimensional Linear Systems , 1999 .

[21]  Ravi N. Banavar,et al.  Point-to-point control of a 2R planar horizontal underactuated manipulator , 2006 .

[22]  Zhiqiang Gao,et al.  Discrete implementation and generalization of the extended state observer , 2006, 2006 American Control Conference.

[23]  Driss Boutat,et al.  A triangular canonical form for a class of 0-flat nonlinear systems , 2011, Int. J. Control.

[24]  Gerasimos Rigatos,et al.  Fuzzy model validation using the local statistical approach , 2009, Fuzzy Sets Syst..

[25]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[26]  Jean Lévine On necessary and sufficient conditions for differential flatness , 2010, Applicable Algebra in Engineering, Communication and Computing.

[27]  Kouhei Ohnishi,et al.  Disturbance Observation–Cancellation Technique , 2011, Control and Mechatronics.

[28]  T. Basar,et al.  H/sup /spl infin//-optimal tracking control techniques for nonlinear underactuated systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[29]  Jian Huang,et al.  Terminal Sliding Mode Control of Mobile Wheeled Inverted Pendulum System with Nonlinear Disturbance Observer , 2014 .

[30]  Sunil K. Agrawal,et al.  Differentially Flat Design of a Closed-Chain Planar Underactuated $\hbox{2}$ -DOF System , 2013, IEEE Trans. Robotics.

[31]  Gerasimos G. Rigatos,et al.  Modelling and Control for Intelligent Industrial Systems - Adaptive Algorithms in Robotics and Industrial Engineering , 2011, Intelligent Systems Reference Library.

[32]  Min Wu,et al.  Unified control of n-link underactuated manipulator with single passive joint: A reduced order approach , 2012 .

[33]  José Jesús Rubio Adaptive least square control in discrete time of robotic arms , 2015 .

[34]  Gerasimos Rigatos,et al.  Nonlinear Control and Filtering Using Differential Flatness Approaches , 2015 .

[35]  Bogdan M. Wilamowski,et al.  Control and Mechatronics , 2011 .

[36]  Jinhua She,et al.  New analytical results of energy-based swing-up control for the Pendubot , 2013 .

[37]  Jose de Jesus Rubio,et al.  Proportional Derivative Control with Inverse Dead-Zone for Pendulum Systems , 2013 .

[38]  Nicolas Petit,et al.  Commande par platitude. Equations différentielles ordinaires et aux dérivées partielles , 2008 .

[39]  Keum Shik Hong An open-loop control for underactuated manipulators using oscillatory inputs: steering capability of an unactuated joint , 2002, IEEE Trans. Control. Syst. Technol..

[40]  Chen Peng,et al.  Singularity-conquering ZG controllers of z2g1 type for tracking control of the IPC system , 2014, Int. J. Control.