Closed-loop evolutionary multiobjective optimization

Artificial evolution has been used for more than 50 years as a method of optimization in engineering, operations research and computational intelligence. In closed-loop evolution (a term used by the statistician, George Box) or, equivalently, evolutionary experimentation (Ingo Rechenberg's terminology), the "phenotypes" are evaluated in the real world by conducting a physical experiment, whilst selection and breeding is simulated. Well-known early work on artificial evolution-design engineering problems in fluid dynamics, and chemical plant process optimization-was carried out in this experimental mode. More recently, the closed-loop approach has been successfully used in much evolvable hardware and evolutionary robotics research, and in some microbiology and biochemistry applications. In this article, several further new targets for closed-loop evolutionary and multiobjective optimization are considered. Four case studies from my own collaborative work are described: (i) instrument optimization in analytical biochemistry; (ii) finding effective drug combinations in vitro; (iii) onchip synthetic biomolecule design; and (iv) improving chocolate production processes. Accurate simulation in these applications is not possible due to complexity or a lack of adequate analytical models. In these and other applications discussed, optimizing experimentally brings with it several challenges: noise; nuisance factors; ephemeral resource constraints; expensive evaluations, and evaluations that must be done in (large) batches. Evolutionary algorithms (EAs) are largely equal to these vagaries, whilst modern multiobjective EAs also enable tradeoffs among conflicting optimization goals to be explored. Nevertheless, principles from other disciplines, such as statistics, design of experiments, machine learning and global optimization are also relevant to aspects of the closed-loop problem, and may inspire futher development of multiobjective EAs.

[1]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[2]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[3]  Kalmanje Krishnakumar,et al.  Micro-Genetic Algorithms For Stationary And Non-Stationary Function Optimization , 1990, Other Conferences.

[4]  Joshua D. Knowles,et al.  Analysis of a complete DNA–protein affinity landscape , 2010, Journal of The Royal Society Interface.

[5]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[6]  Günter Rudolph,et al.  Simulated Evolution under Multiple Criteria Conditions Revisited , 2008, WCCI.

[7]  Ryszard S. Michalski,et al.  The LEM3 implementation of learnable evolution model and its testing on complex function optimization problems , 2006, GECCO.

[8]  J. Lehár,et al.  Multi-target therapeutics: when the whole is greater than the sum of the parts. , 2007, Drug discovery today.

[9]  Douglas B. Kell,et al.  Multiobjective Optimization in Bioinformatics and Computational Biology , 2007, IEEE ACM Trans. Comput. Biol. Bioinform..

[10]  Christopher H. Bryant,et al.  Functional genomic hypothesis generation and experimentation by a robot scientist , 2004, Nature.

[11]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[12]  Luc De Raedt,et al.  Active Learning for High Throughput Screening , 2008, Discovery Science.

[13]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[14]  Jacob D. Feala,et al.  Search Algorithms as a Framework for the Optimization of Drug Combinations , 2008, PLoS Comput. Biol..

[15]  Joseph G. Pigeon,et al.  Statistics for Experimenters: Design, Innovation and Discovery , 2006, Technometrics.

[16]  Enrico Zio,et al.  Robust reliability design of a nuclear system by multiple objective evolutionary optimisation , 2007 .

[17]  Paul J. Layzell,et al.  Analysis of unconventional evolved electronics , 1999, CACM.

[18]  Ben Paechter,et al.  A Comparison of the Performance of Different Metaheuristics on the Timetabling Problem , 2002, PATAT.

[19]  Takashi Gomi,et al.  Book Review: Evolutionary Robotics: the Biology, Intelligence, and Technology of Self-Organizing Machines , 2003, Genetic Programming and Evolvable Machines.

[20]  Peter Schieberle,et al.  Identification of the key aroma compounds in cocoa powder based on molecular sensory correlations. , 2006, Journal of agricultural and food chemistry.

[21]  David B. Fogel,et al.  Evolutionary Computation: The Fossil Record , 1998 .

[22]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[23]  Jonathan E. Fieldsend,et al.  Multi-objective optimisation in the presence of uncertainty , 2005, 2005 IEEE Congress on Evolutionary Computation.

[24]  Inman Harvey,et al.  Evolutionary robotics: the Sussex approach , 1997, Robotics Auton. Syst..

[25]  Marco Dorigo,et al.  Cooperative hole avoidance in a swarm-bot , 2006, Robotics Auton. Syst..

[26]  Hirotaka Nakayama,et al.  Meta-Modeling in Multiobjective Optimization , 2008, Multiobjective Optimization.

[27]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[28]  W. G. Hunter,et al.  Evolutionary Operation: A Review , 1966 .

[29]  David C. Wedge,et al.  Rapid prediction of optimum population size in genetic programming using a novel genotype -: fitness correlation , 2008, GECCO '08.

[30]  Anthony J. Kearsley,et al.  Numerical optimization of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: application to synthetic polymer molecular mass distribution measurement. , 2007, Analytica chimica acta.

[31]  Terry Speed Statistics for Experimenters: Design, Innovation, and Discovery (2nd ed.) , 2006 .

[32]  Peter J. Bentley,et al.  CREATIVE EVOLUTIONARY SYSTEMS , 2001 .

[33]  C. A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Computational Intelligence Magazine.

[34]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[35]  David W. Corne,et al.  Predicting Stochastic Search Algorithm Performance using Landscape State Machines , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[36]  Peter Schieberle,et al.  Changes in key aroma compounds of Criollo cocoa beans during roasting. , 2008, Journal of agricultural and food chemistry.

[37]  John P. Overington,et al.  Can we rationally design promiscuous drugs? , 2006, Current opinion in structural biology.

[38]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[39]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[40]  Olivier Teytaud,et al.  When Does Quasi-random Work? , 2008, PPSN.

[41]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[42]  S. Ducki,et al.  Evaluation of solid-phase micro-extraction coupled to gas chromatography-mass spectrometry for the headspace analysis of volatile compounds in cocoa products. , 2008, Talanta.

[43]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[44]  David Corne,et al.  Developing Landscape State Machines for Improved Algorithm Performance Prediction , 2006 .

[45]  Emma Byrne Optimising the flow of experiments to a robot scientist with multi-objective evolutionary algorithms , 2007, GECCO '07.

[46]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[47]  Simon Parsons,et al.  Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines by Stefano Nolfi and Dario Floreano, MIT Press, 320 pp., $28.00, ISBN 0-262-14070-5 , 2004, Knowledge engineering review (Print).

[48]  Jürgen Teich,et al.  Pareto-Front Exploration with Uncertain Objectives , 2001, EMO.

[49]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[50]  George E. P. Box,et al.  Evolutionary Operation: a Method for Increasing Industrial Productivity , 1957 .

[51]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[52]  Joshua D. Knowles,et al.  Multiobjective Optimization on a Budget of 250 Evaluations , 2005, EMO.

[53]  Joshua D. Knowles,et al.  Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. , 2007, Analytical chemistry.

[54]  J. I The Design of Experiments , 1936, Nature.

[55]  Martin J. Oates,et al.  Landscape State Machines: Tools for Evolutionary Algorithm Performance Analyses and Landscape/Algorithm Mapping , 2003, EvoWorkshops.

[56]  D. Kell,et al.  Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape , 2008, Nucleic acids research.

[57]  Michael T. M. Emmerich,et al.  Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels , 2006, IEEE Transactions on Evolutionary Computation.

[58]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[59]  Joshua D. Knowles,et al.  Closed-loop, multiobjective optimization of analytical instrumentation: gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. , 2005, Analytical chemistry.

[60]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[61]  M. J. Oates Evolutionary Algorithm Performance Profiles on the Adaptive Distributed Database Management Problem , 2000 .

[62]  Godfrey A. Walters,et al.  LEMMO: Hybridising Rule Induction and NSGAII for Multi-Objective Water Systems Design , 2005 .

[63]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[64]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[65]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[66]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[67]  Evan J. Hughes,et al.  Evolutionary Multi-objective Ranking with Uncertainty and Noise , 2001, EMO.

[68]  David W. Corne,et al.  Noisy Multiobjective Optimization on a Budget of 250 Evaluations , 2009, EMO.

[69]  Ingo Rechenberg,et al.  Case studies in evolutionary experimentation and computation , 2000 .

[70]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[71]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[72]  H. Chernoff Sequential Analysis and Optimal Design , 1987 .

[73]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[74]  Yan Fu,et al.  The Effect of Initial Population Sampling on the Convergence of Multi-Objective Genetic Algorithms , 2009 .

[75]  Mikkel T. Jensen,et al.  Robust and Flexible Scheduling with Evolutionary Computation , 2001 .

[76]  Eckart Zitzler,et al.  Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization , 2006, PPSN.

[77]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[78]  Gary G. Yen,et al.  Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation , 2003, IEEE Trans. Evol. Comput..

[79]  P. Coveney,et al.  Combinatorial searches of inorganic materials using the ink-jet printer: science, philosophy and technology , 2001 .

[80]  C. Wandrey,et al.  Medium Optimization by Genetic Algorithm for Continuous Production of Formate Dehydrogenase , 1995 .

[81]  Douglas B. Kell,et al.  In silico modelling of directed evolution: Implications for experimental design and stepwise evolution. , 2009, Journal of theoretical biology.

[82]  Andrew W. Moore,et al.  A Nonparametric Approach to Noisy and Costly Optimization , 2000, ICML.

[83]  A. Hopkins Network pharmacology: the next paradigm in drug discovery. , 2008, Nature chemical biology.

[84]  Thomas Hofmann,et al.  Molecular definition of the taste of roasted cocoa nibs (Theobroma cacao) by means of quantitative studies and sensory experiments. , 2006, Journal of agricultural and food chemistry.

[85]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[86]  Kalyanmoy Deb,et al.  Multiobjective Problem Solving from Nature: From Concepts to Applications (Natural Computing Series) , 2008 .

[87]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[88]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[89]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[90]  Douglas B Kell,et al.  Aptamer evolution for array-based diagnostics. , 2009, Analytical biochemistry.

[91]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[92]  R. J. Gilbert,et al.  Efficient Improvement of Silage Additives by Using Genetic Algorithms , 2000, Applied and Environmental Microbiology.

[93]  Colin R. Reeves,et al.  An Experimental Design Perspective on Genetic Algorithms , 1994, FOGA.

[94]  Evan J. Hughes,et al.  Radar Waveform Optimisation as a Many-Objective Application Benchmark , 2007, EMO.

[95]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[96]  K. Markides,et al.  Multi-parameter investigation of tandem mass spectrometry in a linear ion trap using response surface modelling. , 2005, Journal of mass spectrometry : JMS.

[97]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[98]  P. J. Fleming,et al.  The good of the many outweighs the good of the one: evolutionary multi-objective optimization , 2003 .

[99]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[100]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[101]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .