The Future of Flexible Organic Solar Cells

[1]  Yonggang Huang,et al.  Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations , 2008, Proceedings of the National Academy of Sciences.

[2]  Harrison Ka Hin Lee,et al.  Is organic photovoltaics promising for indoor applications , 2016 .

[3]  Wen‐Chang Chen,et al.  Realization of Intrinsically Stretchable Organic Solar Cells Enabled by Charge-Extraction Layer and Photoactive Material Engineering. , 2018, ACS applied materials & interfaces.

[4]  R. Friend,et al.  Organic solar cells based on non-fullerene acceptors. , 2018, Nature materials.

[5]  Q. Pei,et al.  A Solid-State Intrinsically Stretchable Polymer Solar Cell. , 2017, ACS applied materials & interfaces.

[6]  Xianjie Liu,et al.  12.5% Flexible Nonfullerene Solar Cells by Passivating the Chemical Interaction Between the Active Layer and Polymer Interfacial Layer , 2019, Advanced materials.

[7]  Martin A. Green,et al.  Solar cell efficiency tables (Version 55) , 2019, Progress in Photovoltaics: Research and Applications.

[8]  Han‐Ki Kim,et al.  Room temperature flexible and transparent ITO/Ag/ITO electrode grown on flexile PES substrate by continuous roll-to-roll sputtering for flexible organic photovoltaics , 2009 .

[9]  Hongbin Wu,et al.  Flexible polymer solar cells with power conversion efficiency of 8.7 , 2014 .

[10]  T. Someya,et al.  High Operation Stability of Ultraflexible Organic Solar Cells with Ultraviolet‐Filtering Substrates , 2019, Advanced materials.

[11]  Yi Cui,et al.  Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. , 2015, Nano letters.

[12]  T. Someya,et al.  Efficient and Mechanically Robust Ultraflexible Organic Solar Cells Based on Mixed Acceptors , 2020 .

[13]  Suchol Savagatrup,et al.  Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. , 2017, Chemical reviews.

[14]  Seok‐In Na,et al.  Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes , 2008 .

[15]  Yinhua Zhou,et al.  Flexible nonfullerene organic solar cells based on embedded silver nanowires with an efficiency up to 11.6% , 2019, Journal of Materials Chemistry A.

[16]  David C. Martin,et al.  Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films. , 2016, Acta biomaterialia.

[17]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[18]  X. Zhan,et al.  Molecular Lock: A Versatile Key to Enhance Efficiency and Stability of Organic Solar Cells , 2016, Advanced materials.

[19]  J. Toudert,et al.  High open-circuit voltage and short-circuit current flexible polymer solar cells using ternary blends and ultrathin Ag-based transparent electrodes , 2017 .

[20]  T. Someya,et al.  Highly efficient organic photovoltaics with enhanced stability through the formation of doping-induced stable interfaces , 2020, Proceedings of the National Academy of Sciences.

[21]  T. Fujie,et al.  Elastic kirigami patch for electromyographic analysis of the palm muscle during baseball pitching , 2019, NPG Asia Materials.

[22]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[23]  Y. Woo Transparent Conductive Electrodes Based on Graphene-Related Materials , 2018, Micromachines.

[24]  Tomohito Sekine,et al.  Free-Standing Organic Transistors and Circuits with Sub-Micron Thicknesses , 2016, Scientific Reports.

[25]  Takao Someya,et al.  300‐nm Imperceptible, Ultraflexible, and Biocompatible e‐Skin Fit with Tactile Sensors and Organic Transistors , 2016 .

[26]  V. Pruneri,et al.  An indium tin oxide-free polymer solar cell on flexible glass. , 2015, ACS applied materials & interfaces.

[27]  J. Ishii,et al.  Solution-processable colorless polyimides with ultralow coefficients of thermal expansion for optoelectronic applications , 2016 .

[28]  O. Inganäs,et al.  Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications , 2019, Nature Energy.

[29]  Jing Feng,et al.  Highly efficient and mechanically robust stretchable polymer solar cells with random buckling , 2017 .

[30]  Takao Someya,et al.  Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications , 2017 .

[31]  T. Someya,et al.  Nanograting Structured Ultrathin Substrate for Ultraflexible Organic Photovoltaics , 2020 .

[32]  S. Sensfuss,et al.  Efficient large-area polymer solar cells on flexible substrates , 2004 .

[33]  Klaus Meerholz,et al.  The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells , 2006 .

[34]  Jiang Huang,et al.  10.4% Power Conversion Efficiency of ITO‐Free Organic Photovoltaics Through Enhanced Light Trapping Configuration , 2015 .

[35]  Sang Woo Seo,et al.  Semitransparent Flexible Organic Solar Cells Employing Doped-Graphene Layers as Anode and Cathode Electrodes. , 2018, ACS applied materials & interfaces.

[36]  Han‐Ki Kim,et al.  Mechanical integrity of flexible Ag nanowire network electrodes coated on colorless PI substrates for flexible organic solar cells , 2012 .

[37]  F. Krebs,et al.  Lifetime of Organic Photovoltaics: Status and Predictions , 2016 .

[38]  T. Fujie,et al.  Printed nanofilms mechanically conforming to living bodies. , 2019, Biomaterials science.

[39]  Zhibin Yu,et al.  Silver Nanowire‐Polymer Composite Electrodes for Efficient Polymer Solar Cells , 2011, Advanced materials.

[40]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[41]  Lianmao Peng,et al.  Wafer‐Scale Fabrication of Ultrathin Flexible Electronic Systems via Capillary‐Assisted Electrochemical Delamination , 2018, Advanced materials.

[42]  Hao Gong,et al.  Investigation of mechanical properties of transparent conducting oxide thin films , 2003 .

[43]  Lianmao Peng,et al.  Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces , 2018 .

[44]  Takao Someya,et al.  Materials and structural designs of stretchable conductors. , 2019, Chemical Society reviews.

[45]  Sheng-Fu Horng,et al.  Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer , 2010 .

[46]  Stephen R. Forrest,et al.  Dynamic kirigami structures for integrated solar tracking , 2015, Nature Communications.

[47]  T. Someya,et al.  Durable Ultraflexible Organic Photovoltaics with Novel Metal‐Oxide‐Free Cathode , 2018, Advanced Functional Materials.

[48]  J. Hsieh,et al.  Intrinsically Stretchable Nanostructured Silver Electrodes for Realizing Efficient Strain Sensors and Stretchable Organic Photovoltaics. , 2017, ACS applied materials & interfaces.

[49]  Kwanghee Lee,et al.  A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency , 2016, Nature Communications.

[50]  Markus Hösel,et al.  Roll-to-roll fabrication of polymer solar cells , 2012 .

[51]  Ruixiang Peng,et al.  16.67% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy , 2019, Advanced materials.

[52]  Ashraf Uddin,et al.  Encapsulation of Organic and Perovskite Solar Cells: A Review , 2019, Coatings.

[53]  A. Jen,et al.  Enhanced Light‐Harvesting by Integrating Synergetic Microcavity and Plasmonic Effects for High‐Performance ITO‐Free Flexible Polymer Solar Cells , 2015 .

[54]  M. Kaltenbrunner,et al.  Ultraflexible organic photonic skin , 2016, Science Advances.

[55]  Takao Someya,et al.  Printable elastic conductors with a high conductivity for electronic textile applications , 2015, Nature Communications.

[56]  D. Lipomi,et al.  Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS , 2019, Advanced materials.

[57]  R. Delmdahl,et al.  Laser lift-off systems for flexible-display production , 2014 .

[58]  Yongfang Li,et al.  Flexible and Semitransparent Organic Solar Cells , 2018 .

[59]  Manabu Kinoshita,et al.  Adhesive, Flexible, and Robust Polysaccharide Nanosheets Integrated for Tissue‐Defect Repair , 2009 .

[60]  T. Someya,et al.  Thermally stable, highly efficient, ultraflexible organic photovoltaics , 2018, Proceedings of the National Academy of Sciences.

[61]  Wei Li,et al.  Synergetic Transparent Electrode Architecture for Efficient Non-Fullerene Flexible Organic Solar Cells with >12% Efficiency. , 2019, ACS Nano.

[62]  Jong-Hyun Ahn,et al.  Ultrathin organic solar cells with graphene doped by ferroelectric polarization. , 2014, ACS applied materials & interfaces.

[63]  Michael U. Ocheje,et al.  Recent Advances in Mechanically Robust and Stretchable Bulk Heterojunction Polymer Solar Cells. , 2018, Chemical record.

[64]  S. Iijima,et al.  A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature , 2012 .

[65]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[66]  Stephen R. Forrest,et al.  Intrinsically stable organic solar cells under high-intensity illumination , 2019, Nature.

[67]  Yoshifumi Ota,et al.  Low resistivity indium–tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films , 1990 .

[68]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[69]  Pei Cheng,et al.  Stability of organic solar cells: challenges and strategies. , 2016, Chemical Society reviews.

[70]  Takao Someya,et al.  Organic Photovoltaics: Toward Self-Powered Wearable Electronics , 2019, Proceedings of the IEEE.

[71]  T. Someya,et al.  Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics , 2018, Nature.

[72]  S. Menzel,et al.  Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells , 2017, Materials.

[73]  Chen Zhu,et al.  Experimental study of laser lift-off of ultra-thin polyimide film for flexible electronics , 2018, Science China Technological Sciences.

[74]  Yanming Sun,et al.  A General Approach for Lab‐to‐Manufacturing Translation on Flexible Organic Solar Cells , 2019, Advanced materials.

[75]  A. Jen,et al.  Interfacial Engineering of Ultrathin Metal Film Transparent Electrode for Flexible Organic Photovoltaic Cells , 2014, Advanced materials.

[76]  Hongsuk Suh,et al.  Long-term stable polymer solar cells with significantly reduced burn-in loss , 2014, Nature Communications.

[77]  Chongwu Zhou,et al.  Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. , 2010, ACS nano.

[78]  H. Yoshimura,et al.  Mechanical Properties and Microstructure of Zinc Oxide Varistor Ceramics , 2006 .

[79]  J. Dual,et al.  Mechanical characterization of PEDOT : PSS thin films , 2009 .

[80]  Changsoon Cho,et al.  Highly Efficient (>10%) Flexible Organic Solar Cells on PEDOT‐Free and ITO‐Free Transparent Electrodes , 2019, Advanced materials.

[81]  Jie Min,et al.  A Cost Analysis of Fully Solution‐Processed ITO‐Free Organic Solar Modules , 2018, Advanced Energy Materials.

[82]  Darran R. Cairns,et al.  The Mechanical Reliability of Sputter-Coated Indium Tin Oxide Polyester Substrates for Flexible Display and Touchscreen Applications , 2001 .

[83]  Kwanghee Lee,et al.  Bulk‐Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization , 2016, Advanced materials.