Continuous Context Inference on Mobile Platforms

[1]  Frank Dürr,et al.  Remote real-time trajectory simplification , 2009, 2009 IEEE International Conference on Pervasive Computing and Communications.

[2]  Jian Ma,et al.  Accelerometer Based Transportation Mode Recognition on Mobile Phones , 2010, 2010 Asia-Pacific Conference on Wearable Computing Systems.

[3]  Jennifer Healey,et al.  A Long-Term Evaluation of Sensing Modalities for Activity Recognition , 2007, UbiComp.

[4]  Sasu Tarkoma,et al.  Accelerometer-based transportation mode detection on smartphones , 2013, SenSys '13.

[5]  Mikkel Baun Kjærgaard,et al.  Sensing and Classifying Impairments of GPS Reception on Mobile Devices , 2011, Pervasive.

[6]  A. Prasad Sistla,et al.  Updating and Querying Databases that Track Mobile Units , 1999, Distributed and Parallel Databases.

[7]  Bernt Schiele,et al.  Weakly Supervised Recognition of Daily Life Activities with Wearable Sensors , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Patrick Olivier,et al.  Slice&Dice: Recognizing Food Preparation Activities Using Embedded Accelerometers , 2009, AmI.

[9]  Marc G. Genton,et al.  Classes of Kernels for Machine Learning: A Statistics Perspective , 2002, J. Mach. Learn. Res..

[10]  Andrea Vitaletti,et al.  Cell-ID location technique, limits and benefits: an experimental study , 2004, Sixth IEEE Workshop on Mobile Computing Systems and Applications.

[11]  Malcolm David Macnaughtan,et al.  Positioning GSM telephones , 1998, IEEE Commun. Mag..

[12]  Joongheon Kim,et al.  Energy-efficient rate-adaptive GPS-based positioning for smartphones , 2010, MobiSys '10.

[13]  Hojung Cha,et al.  SmartDC: Mobility Prediction-Based Adaptive Duty Cycling for Everyday Location Monitoring , 2014, IEEE Transactions on Mobile Computing.

[14]  Gaetano Borriello,et al.  A Practical Approach to Recognizing Physical Activities , 2006, Pervasive.

[15]  Sivan Toledo,et al.  VTrack: accurate, energy-aware road traffic delay estimation using mobile phones , 2009, SenSys '09.

[16]  Marco Luca Sbodio,et al.  A Wearable Computing Prototype for supporting training activities in Automotive Production , 2007 .

[17]  Qiang Yang,et al.  Cross-domain activity recognition via transfer learning , 2011, Pervasive Mob. Comput..

[18]  Ouri Wolfson,et al.  Cost and imprecision in modeling the position of moving objects , 1998, Proceedings 14th International Conference on Data Engineering.

[19]  Stephen A. Brewster,et al.  Social gravity: a virtual elastic tether for casual, privacy-preserving pedestrian rendezvous , 2010, CHI.

[20]  H. Laitinen,et al.  Database correlation method for GSM location , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[21]  Reynold Cheng,et al.  Energy-Efficient Monitoring of Mobile Objects with Uncertainty-Aware Tolerances , 2007, 11th International Database Engineering and Applications Symposium (IDEAS 2007).

[22]  Cem Ersoy,et al.  Using Active Learning to Allow Activity Recognition on a Large Scale , 2011, AmI.

[23]  Romit Roy Choudhury,et al.  Micro-Blog: sharing and querying content through mobile phones and social participation , 2008, MobiSys '08.

[24]  G. Englebienne,et al.  Transferring Knowledge of Activity Recognition across Sensor Networks , 2010, Pervasive.

[25]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[26]  Eyal de Lara,et al.  Accurate GSM Indoor Localization , 2005, UbiComp.

[27]  Seth J. Teller,et al.  Implications of device diversity for organic localization , 2011, 2011 Proceedings IEEE INFOCOM.

[28]  Hojung Cha,et al.  Mobility prediction-based smartphone energy optimization for everyday location monitoring , 2011, SenSys.

[29]  Sourav Bhattacharya,et al.  Place Identification : A Comparative Study , 2009 .

[30]  Honglak Lee,et al.  An Analysis of Single-Layer Networks in Unsupervised Feature Learning , 2011, AISTATS.

[31]  Jatinder Pal Singh,et al.  Improving energy efficiency of location sensing on smartphones , 2010, MobiSys '10.

[32]  M. B. Kjasrgaard Location-based services on mobile phones: minimizing power consumption , 2012, IEEE Pervasive Computing.

[33]  Sally A. Goldman,et al.  Multiple-Instance Learning of Real-Valued Data , 2001, J. Mach. Learn. Res..

[34]  John R. Douceur,et al.  The Sybil Attack , 2002, IPTPS.

[35]  Eyal de Lara,et al.  GSM indoor localization , 2007, Pervasive Mob. Comput..

[36]  Ouri Wolfson,et al.  Spatio-temporal data reduction with deterministic error bounds , 2003, DIALM-POMC.

[37]  Patrik O. Hoyer,et al.  Non-negative sparse coding , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.

[38]  Mikkel Baun Kjærgaard,et al.  EnTracked: energy-efficient robust position tracking for mobile devices , 2009, MobiSys '09.

[39]  Daniel Jackson,et al.  Rapid specification and automated generation of prompting systems to assist people with dementia , 2011, Pervasive Mob. Comput..

[40]  Cassim Ladha,et al.  ClimbAX: skill assessment for climbing enthusiasts , 2013, UbiComp.

[41]  Paul Lukowicz,et al.  Wearable Activity Tracking in Car Manufacturing , 2008, IEEE Pervasive Computing.

[42]  Eemil Lagerspetz,et al.  The company you keep: mobile malware infection rates and inexpensive risk indicators , 2013, WWW.

[43]  Johannes Peltola,et al.  Activity classification using realistic data from wearable sensors , 2006, IEEE Transactions on Information Technology in Biomedicine.

[44]  Donghai Guan,et al.  Activity Recognition Based on Semi-supervised Learning , 2007, 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2007).

[45]  Ling Bao,et al.  Activity Recognition from User-Annotated Acceleration Data , 2004, Pervasive.

[46]  Axel Küpper Location-based Services: Fundamentals and Operation , 2005 .

[47]  Feng Zhao,et al.  Energy-accuracy trade-off for continuous mobile device location , 2010, MobiSys '10.

[48]  Juha Pärkkä,et al.  Automatic feature selection for context recognition in mobile devices , 2010, Pervasive Mob. Comput..

[49]  Irfan A. Essa,et al.  Discovering Characteristic Actions from On-Body Sensor Data , 2006, 2006 10th IEEE International Symposium on Wearable Computers.

[50]  Paul Lukowicz,et al.  Collecting complex activity datasets in highly rich networked sensor environments , 2010, 2010 Seventh International Conference on Networked Sensing Systems (INSS).

[51]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[52]  Dieter Fox,et al.  Bayesian Filtering for Location Estimation , 2003, IEEE Pervasive Comput..

[53]  Yongbeom Lee,et al.  Application of Electronic Compass for Mobile Robot in an Indoor Environment , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[54]  Shie Mannor,et al.  Activity and Gait Recognition with Time-Delay Embeddings , 2010, AAAI.

[55]  Patrick Olivier,et al.  Activity Recognition and Healthier Food Preparation , 2011 .

[56]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[57]  Ramesh Govindan,et al.  Energy-efficient positioning for smartphones using Cell-ID sequence matching , 2011, MobiSys '11.

[58]  Mirco Musolesi,et al.  Sensing meets mobile social networks: the design, implementation and evaluation of the CenceMe application , 2008, SenSys '08.

[59]  S. Mallat A wavelet tour of signal processing , 1998 .

[60]  Ting Chen,et al.  Research on human activity recognition based on active learning , 2010, 2010 International Conference on Machine Learning and Cybernetics.

[61]  Bernt Schiele,et al.  Exploring semi-supervised and active learning for activity recognition , 2008, 2008 12th IEEE International Symposium on Wearable Computers.

[62]  Dan Frankowski,et al.  Because I carry my cell phone anyway: functional location-based reminder applications , 2006, CHI.

[63]  Eric Horvitz,et al.  LOCADIO: inferring motion and location from Wi-Fi signal strengths , 2004, The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004..

[64]  Elliott D. Kaplan Understanding GPS : principles and applications , 1996 .

[65]  Emiliano Miluzzo,et al.  A survey of mobile phone sensing , 2010, IEEE Communications Magazine.

[66]  Scott Counts,et al.  Learning Likely Locations , 2013, UMAP.

[67]  Gaetano Borriello,et al.  Particle Filters for Location Estimation in Ubiquitous Computing: A Case Study , 2004, UbiComp.

[68]  Deborah Estrin,et al.  PEIR, the personal environmental impact report, as a platform for participatory sensing systems research , 2009, MobiSys '09.

[69]  Deborah Estrin,et al.  Using mobile phones to determine transportation modes , 2010, TOSN.

[70]  Sourav Bhattacharya,et al.  Identifying Meaningful Places: The Non-parametric Way , 2009, Pervasive.

[71]  Bernt Schiele,et al.  A tutorial on human activity recognition using body-worn inertial sensors , 2014, CSUR.

[72]  Lei Yang,et al.  Accurate online power estimation and automatic battery behavior based power model generation for smartphones , 2010, 2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).

[73]  Henry Tirri,et al.  A Statistical Modeling Approach to Location Estimation , 2002, IEEE Trans. Mob. Comput..

[74]  Bernt Schiele,et al.  Using rhythm awareness in long-term activity recognition , 2008, 2008 12th IEEE International Symposium on Wearable Computers.

[75]  Eyal de Lara,et al.  The SkyLoc Floor Localization System , 2007, Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom'07).

[76]  Alexandre M. Bayen,et al.  Virtual trip lines for distributed privacy-preserving traffic monitoring , 2008, MobiSys '08.

[77]  Ye Xu,et al.  Enabling large-scale human activity inference on smartphones using community similarity networks (csn) , 2011, UbiComp '11.

[78]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[79]  Michael L. Littman,et al.  Activity Recognition from Accelerometer Data , 2005, AAAI.

[80]  Tao Zhang,et al.  LEAP: a low energy assisted GPS for trajectory-based services , 2011, UbiComp '11.

[81]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[82]  Bernt Schiele,et al.  Scalable Recognition of Daily Activities with Wearable Sensors , 2007, LoCA.

[83]  T. Vincenty DIRECT AND INVERSE SOLUTIONS OF GEODESICS ON THE ELLIPSOID WITH APPLICATION OF NESTED EQUATIONS , 1975 .

[84]  Zhigang Liu,et al.  The Jigsaw continuous sensing engine for mobile phone applications , 2010, SenSys '10.

[85]  Anton Schwaighofer,et al.  GPPS: A Gaussian Process Positioning System for Cellular Networks , 2003, NIPS.

[86]  Mike Y. Chen,et al.  Practical Metropolitan-Scale Positioning for GSM Phones , 2006, UbiComp.

[87]  Upkar Varshney,et al.  Pervasive Healthcare and Wireless Health Monitoring , 2007, Mob. Networks Appl..

[88]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[89]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[90]  Bill N. Schilit,et al.  Place Lab: Device Positioning Using Radio Beacons in the Wild , 2005, Pervasive.

[91]  Ricardo Chavarriaga,et al.  Benchmarking classification techniques using the Opportunity human activity dataset , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[92]  Tapio Seppänen,et al.  Recognizing human motion with multiple acceleration sensors , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[93]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[94]  Ricardo Chavarriaga,et al.  The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition , 2013, Pattern Recognit. Lett..

[95]  Bernt Schiele,et al.  Analyzing features for activity recognition , 2005, sOc-EUSAI '05.

[96]  Diogo R. Ferreira,et al.  Preprocessing techniques for context recognition from accelerometer data , 2010, Personal and Ubiquitous Computing.

[97]  Craig A. Knoblock,et al.  Selective Sampling with Redundant Views , 2000, AAAI/IAAI.

[98]  Mikkel Baun Kjærgaard,et al.  Indoor Positioning Using GPS Revisited , 2010, Pervasive.

[99]  Christoph Schlieder,et al.  Designing location-based mobile games with a purpose: collecting geospatial data with CityExplorer , 2008, ACE '08.

[100]  Hari Balakrishnan,et al.  Accurate, Low-Energy Trajectory Mapping for Mobile Devices , 2011, NSDI.

[101]  S. Ahonen,et al.  Database correlation method for UMTS location , 2001, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[102]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[103]  Paul Lukowicz,et al.  Towards Recognizing Tai Chi - An Initial Experiment Using Wearable Sensors , 2006 .

[104]  Kent Larson,et al.  Activity Recognition in the Home Using Simple and Ubiquitous Sensors , 2004, Pervasive.

[105]  Paul Coulton,et al.  Extending cyberspace: location based games using cellular phones , 2006, CIE.

[106]  Patrick Olivier,et al.  Feature Learning for Activity Recognition in Ubiquitous Computing , 2011, IJCAI.

[107]  Gene H. Golub,et al.  Algorithms for Computing the Sample Variance: Analysis and Recommendations , 1983 .

[108]  Yi Wang,et al.  A framework of energy efficient mobile sensing for automatic user state recognition , 2009, MobiSys '09.

[109]  Tanzeem Choudhury,et al.  Passive and In-Situ assessment of mental and physical well-being using mobile sensors , 2011, UbiComp '11.

[110]  Deborah Estrin,et al.  Recruitment Framework for Participatory Sensing Data Collections , 2010, Pervasive.

[111]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[112]  Paul Lukowicz,et al.  All for one or one for all? Combining heterogeneous features for activity spotting , 2010, 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[113]  Albrecht Schmidt,et al.  There is more to context than location , 1999, Comput. Graph..

[114]  Injong Rhee,et al.  Towards Mobile Phone Localization without War-Driving , 2010, 2010 Proceedings IEEE INFOCOM.

[115]  Emiliano Miluzzo,et al.  BikeNet: A mobile sensing system for cyclist experience mapping , 2009, TOSN.

[116]  Rich Caruana,et al.  Multitask Learning , 1997, Machine-mediated learning.

[117]  Q. Mcnemar Note on the sampling error of the difference between correlated proportions or percentages , 1947, Psychometrika.

[118]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[119]  Xing Xie,et al.  GeoLife2.0: A Location-Based Social Networking Service , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[120]  Minna Isomursu,et al.  Tracking Outdoor Sports - User Experience Perspective , 2008, AmI.

[121]  Thomas Hofmann,et al.  Support Vector Machines for Multiple-Instance Learning , 2002, NIPS.

[122]  Bernt Schiele,et al.  Discovery of activity patterns using topic models , 2008 .

[123]  John Krumm,et al.  Location-aware computing comes of age , 2004, Computer.

[124]  Mikkel Baun Kjærgaard,et al.  Improving pervasive positioning through three-tier cyber foraging , 2011, 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[125]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[126]  Andreas Haeberlen,et al.  Practical robust localization over large-scale 802.11 wireless networks , 2004, MobiCom '04.

[127]  J. Hershberger,et al.  Speeding Up the Douglas-Peucker Line-Simplification Algorithm , 1992 .

[128]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[129]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[130]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[131]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[132]  Peter Andras,et al.  On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution , 2013, ISWC '13.

[133]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[134]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[135]  John Krumm,et al.  Ubiquitous Computing Fundamentals , 2009 .

[136]  Dieter Fox,et al.  Adapting the Sample Size in Particle Filters Through KLD-Sampling , 2003, Int. J. Robotics Res..

[137]  Paul Lukowicz,et al.  Recording a Complex, Multi Modal Activity Data Set for Context Recognition , 2011, ARCS Workshops.

[138]  Thomas K. Peucker,et al.  2. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature , 2011 .

[139]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[140]  M J Caruso,et al.  VEHICLE DETECTION AND COMPASS APPLICATIONS USING AMR MAGNETIC SENSORS , 1999 .

[141]  Guang-Zhong Yang,et al.  The use of pervasive sensing for behaviour profiling - a survey , 2009, Pervasive Mob. Comput..

[142]  Dieter Fox,et al.  Gaussian Processes for Signal Strength-Based Location Estimation , 2006, Robotics: Science and Systems.

[143]  Bernt Schiele,et al.  Activity Recognition from Sparsely Labeled Data Using Multi-Instance Learning , 2009, LoCA.

[144]  David W. McDonald,et al.  Activity sensing in the wild: a field trial of ubifit garden , 2008, CHI.

[145]  Joseph Kee-Yin Ng,et al.  Location Estimation via Support Vector Regression , 2007, IEEE Transactions on Mobile Computing.