Physiological computation of binocular disparity

[1]  N. Qian,et al.  A Physiological Model for Motion-Stereo Integration and a Unified Explanation of Pulfrich-like Phenomena , 1997, Vision Research.

[2]  Ning Qian,et al.  Binocular Receptive Field Models, Disparity Tuning, and Characteristic Disparity , 1996, Neural Computation.

[3]  L. Spillmann,et al.  Long-range interactions in visual perception , 1996, Trends in Neurosciences.

[4]  David J. Fleet,et al.  Neural encoding of binocular disparity: Energy models, position shifts and phase shifts , 1996, Vision Research.

[5]  C. Gilbert,et al.  Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex , 1995, Nature.

[6]  H. Smallman Fine-to-coarse scale disambiguation in stereopsis , 1995, Vision Research.

[7]  R. Hess,et al.  D max for stereopsis depends on size, not spatial frequency content , 1995, Vision Research.

[8]  Heinrich H. Bülthoff,et al.  Human stereovision without localized image features , 1995, Biological Cybernetics.

[9]  R D Freeman,et al.  Neuronal Mechanisms Underlying Stereopsis: How Do Simple Cells in the Visual Cortex Encode Binocular Disparity? , 1995, Perception.

[10]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. III. Modeling , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Laurie M. Wilcox,et al.  Linear and non-linear filtering in stereopsis , 1994, Vision Research.

[12]  H. Smallman,et al.  Size-disparity correlation in stereopsis at contrast threshold. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Ning Qian,et al.  Computing Stereo Disparity and Motion with Known Binocular Cell Properties , 1994, Neural Computation.

[14]  A. M. Rohaly,et al.  Disparity averaging across spatial scales , 1994, Vision Research.

[15]  Lei Liu,et al.  Quantitative stereoscopic depth without binocular correspondence , 1994, Nature.

[16]  A. M. Rohaly,et al.  Nature of coarse-to-fine constraints on binocular fusion. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Hermann Wagner,et al.  Disparity-sensitive cells in the owl have a characteristic disparity , 1993, Nature.

[18]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[19]  R. Blake,et al.  Spatial frequency tuning of human stereopsis , 1991, Vision Research.

[20]  Gregory C. DeAngelis,et al.  Depth is encoded in the visual cortex by a specialized receptive field structure , 1991, Nature.

[21]  David J. Fleet,et al.  Phase-based disparity measurement , 1991, CVGIP Image Underst..

[22]  H. Wilson,et al.  Coarse spatial scales constrain the range of binocular fusion on fine scales. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[23]  I. Ohzawa,et al.  On the neurophysiological organization of binocular vision , 1990, Vision Research.

[24]  Shinsuke Shimojo,et al.  Da vinci stereopsis: Depth and subjective occluding contours from unpaired image points , 1990, Vision Research.

[25]  K. Nakayama,et al.  Real world occlusion constraints and binocular rivalry , 1990, Vision Research.

[26]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[27]  D G Stork,et al.  Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? , 1990, Journal of the Optical Society of America. A, Optics and image science.

[28]  A. Yuille,et al.  A model for the estimate of local image velocity by cells in the visual cortex , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[29]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[30]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[31]  T. Wiesel,et al.  Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  G. Westheimer Spatial interaction in the domain of disparity signals in human stereoscopic vision. , 1986, The Journal of physiology.

[33]  A. Derrington,et al.  Separate detectors for simple and complex grating patterns? , 1985, Vision Research.

[34]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[35]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[36]  P. Lennie,et al.  Spatial frequency analysis in the visual system. , 1985, Annual review of neuroscience.

[37]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[38]  B. Julesz,et al.  Binocular disparity modulation sensitivity to disparities offset from the plane of fixation , 1984, Vision Research.

[39]  P. O. Bishop,et al.  Binocular simple cells for local stereopsis: Comparison of receptive field organizations for the two eyes , 1984, Vision Research.

[40]  C. Schor,et al.  Disparity range for local stereopsis as a function of luminance spatial frequency , 1983, Vision Research.

[41]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[42]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[43]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[44]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[45]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[46]  B Julesz,et al.  Experiments in the visual perception of texture. , 1975, Scientific American.

[47]  Marsha Jo Hannah,et al.  Computer matching of areas in stereo images. , 1974 .

[48]  V. Ramachandran,et al.  Apparent movement with subjective contours. , 1973, Vision research.

[49]  V. Ramachandran,et al.  The Role of Contours in Stereopsis , 1973, Nature.

[50]  P. O. Bishop,et al.  Binocular interaction fields of single units in the cat striate cortex , 1971, The Journal of physiology.

[51]  N. Graham,et al.  Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channels models. , 1971, Vision research.

[52]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[53]  C. Blakemore The range and scope of binocular depth discrimination in man , 1970, The Journal of physiology.

[54]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[55]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[56]  K. N. Ogle Disparity limits of stereopsis. , 1952, A.M.A. archives of ophthalmology.

[57]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .