Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices.

Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices Dengjie Chen,†,⊥,∇ Chi Chen,†,⊥ Zarah Medina Baiyee,† Zongping Shao,‡,§ and Francesco Ciucci*,†,∥ †Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China ‡State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, China Department of Chemical Engineering, Curtin University, Perth, Western Australia 6845, Australia Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

[1]  G. Maia,et al.  Catalysts for oxygen reduction reaction based on nanocrystals of a Pt or Pt–Pd alloy shell supported on a Au core , 2016, Journal of Solid State Electrochemistry.

[2]  Zongping Shao,et al.  0 , 0 . 05 , 0 . 1 ) Toward Their Application as Superior Oxygen Reduction Electrodes , 2016 .

[3]  F. Ciucci,et al.  Ba0.95La0.05FeO3−δ–multi-layer graphene as a low-cost and synergistic catalyst for oxygen evolution reaction , 2015 .

[4]  A. Manthiram,et al.  LaTi0.65Fe0.35O3−δ nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries , 2015 .

[5]  Vladan Stevanović,et al.  Intrinsic Material Properties Dictating Oxygen Vacancy Formation Energetics in Metal Oxides. , 2015, The journal of physical chemistry letters.

[6]  Yang Shao-Horn,et al.  Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis , 2015 .

[7]  Kyle M. Allen,et al.  Design Principles of Perovskites for Thermochemical Oxygen Separation , 2015, ChemSusChem.

[8]  Yutao Li,et al.  Active LaNi1−xFexO3 bifunctional catalysts for air cathodes in alkaline media , 2015 .

[9]  A. Kolpak,et al.  Ab Initio Approach for Prediction of Oxide Surface Structure, Stoichiometry, and Electrocatalytic Activity in Aqueous Solution. , 2015, The journal of physical chemistry letters.

[10]  Zongping Shao,et al.  Boosting oxygen reduction reaction activity of palladium by stabilizing its unusual oxidation states in perovskite , 2015 .

[11]  Linda F. Nazar,et al.  A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries , 2015 .

[12]  N. Fujiwara,et al.  Oxygen Reduction Activity on a Nanosized Perovskite-Type Oxide Prepared by Polyvinyl Pyrrolidone Method , 2015 .

[13]  Charles C. L. McCrory,et al.  Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. , 2015, Journal of the American Chemical Society.

[14]  Zongping Shao,et al.  SrNb(0.1)Co(0.7)Fe(0.2)O(3-δ) perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. , 2015, Angewandte Chemie.

[15]  Zongping Shao,et al.  Oriented PrBaCo2O5+δ thin films for solid oxide fuel cells , 2015 .

[16]  F. Ciucci,et al.  A molecular dynamics study of oxygen ion diffusion in A-site ordered perovskite PrBaCo(2)O(5.5): data mining the oxygen trajectories. , 2015, Physical chemistry chemical physics : PCCP.

[17]  K. Koumoto,et al.  Electronic conduction in La-based perovskite-type oxides , 2015, Science and technology of advanced materials.

[18]  Zhonghua Zhu,et al.  Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation , 2015 .

[19]  M. G. Park,et al.  Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries. , 2015, ChemSusChem.

[20]  J. Rossmeisl,et al.  A Linear Response DFT+U Study of Trends in the Oxygen Evolution Activity of Transition Metal Rutile Dioxides , 2015 .

[21]  M. Oh,et al.  The bifunctional electrocatalytic activity of perovskite La0.6Sr0.4CoO3−δ for oxygen reduction and evolution reactions , 2015 .

[22]  W. Zhou,et al.  In Situ Tetraethoxysilane‐Templated Porous Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite for the Oxygen Evolution Reaction , 2015 .

[23]  W. Chueh,et al.  Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions , 2015, Nature Communications.

[24]  Jens K Nørskov,et al.  Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. , 2015, Journal of the American Chemical Society.

[25]  Zhongwei Chen,et al.  Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications. , 2015, ACS applied materials & interfaces.

[26]  R. Kötz,et al.  Electrocatalysis of Perovskites: The Influence of Carbon on the Oxygen Evolution Activity , 2015 .

[27]  Martin Hangaard Hansen,et al.  Towards first principles modeling of electrochemical electrode-electrolyte interfaces , 2015 .

[28]  Min Gyu Kim,et al.  Fabrication of Ba0.5Sr0.5Co0.8Fe0.2O3–δ Catalysts with Enhanced Electrochemical Performance by Removing an Inherent Heterogeneous Surface Film Layer , 2015, Advanced materials.

[29]  M. Shen,et al.  Hollow spherical La0.8Sr0.2MnO3 perovskite oxide with enhanced catalytic activities for the oxygen reduction reaction , 2014 .

[30]  D. Duprez,et al.  Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality , 2014 .

[31]  I. Chorkendorff,et al.  Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses , 2014 .

[32]  Lina Wang,et al.  Preparation of La1−xCaxMnO3 perovskite–graphene composites as oxygen reduction reaction electrocatalyst in alkaline medium , 2014 .

[33]  Zongping Shao,et al.  A universal and facile way for the development of superior bifunctional electrocatalysts for oxygen reduction and evolution reactions utilizing the synergistic effect. , 2014, Chemistry.

[34]  J. Goodenough,et al.  Electrocatalytic performances of LaNi1−Mg O3 perovskite oxides as bi-functional catalysts for lithium air batteries , 2014 .

[35]  L. Nazar,et al.  Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries , 2014 .

[36]  Zhong Ma,et al.  The double perovskite oxide Sr2CrMoO(6-δ) as an efficient electrocatalyst for rechargeable lithium air batteries. , 2014, Chemical communications.

[37]  F. Tietz,et al.  Activation of oxygen evolving perovskites for oxygen reduction by functionalization with Fe-N(x)/C groups. , 2014, Chemical communications.

[38]  Hong Yang,et al.  Ca₂Mn₂O₅ as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. , 2014, Journal of the American Chemical Society.

[39]  M. Pan,et al.  N-doped La2Zr2O7 as an enhanced electrocatalyst for oxygen reduction reaction , 2014 .

[40]  Emiliana Fabbri,et al.  Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction , 2014 .

[41]  Tianshou Zhao,et al.  A non-carbon cathode electrode for lithium–oxygen batteries , 2014 .

[42]  Jiaqi Huang,et al.  Toward Full Exposure of “Active Sites”: Nanocarbon Electrocatalyst with Surface Enriched Nitrogen for Superior Oxygen Reduction and Evolution Reactivity , 2014 .

[43]  Daniel Duprez,et al.  Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. , 2014, Chemical reviews.

[44]  Hongyun Ma,et al.  A bifunctional electrocatalyst α-MnO2-LaNiO3/carbon nanotube composite for rechargeable zinc–air batteries , 2014 .

[45]  M. Jaroniec,et al.  Synthesis of highly active and stable spinel-type oxygen evolution electrocatalysts by a rapid inorganic self-templating method. , 2014, Chemistry.

[46]  F. Tietz,et al.  Evaluation of perovskites as electrocatalysts for the oxygen evolution reaction. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[47]  Jihyun Hong,et al.  Aqueous rechargeable Li and Na ion batteries. , 2014, Chemical reviews.

[48]  Zhaolin Liu,et al.  Mn and Co co-substituted Fe3O4 nanoparticles on nitrogen-doped reduced graphene oxide for oxygen electrocatalysis in alkaline solution , 2014 .

[49]  Yang Yu,et al.  Free-standing Ni mesh with in-situ grown MnO2 nanoparticles as cathode for Li–air batteries , 2014 .

[50]  H. Fei,et al.  Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers. , 2014, ACS nano.

[51]  X. Lou,et al.  General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties. , 2014, Angewandte Chemie.

[52]  Ziyu Wu,et al.  Nonstoichiometric perovskite CaMnO(3-δ) for oxygen electrocatalysis with high activity. , 2014, Inorganic chemistry.

[53]  Zongping Shao,et al.  Computational and experimental analysis of Ba0.95La0.05FeO3−δ as a cathode material for solid oxide fuel cells , 2014 .

[54]  Hui Huang,et al.  Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. , 2014, Journal of the American Chemical Society.

[55]  Aleksandar R. Zeradjanin,et al.  Dissolution of Noble Metals during Oxygen Evolution in Acidic Media , 2014 .

[56]  X. D. Xu,et al.  Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis , 2014 .

[57]  Kyu-Nam Jung,et al.  Nanostructured doped ceria for catalytic oxygen reduction and Li2O2 oxidation in non-aqueous electrolytes , 2014 .

[58]  T. Poux,et al.  Electrocatalytic oxygen reduction reaction on perovskite oxides: series versus direct pathway. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[59]  Junjie Gu,et al.  An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells , 2014 .

[60]  Fang Song,et al.  Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis , 2014, Nature Communications.

[61]  Ramesh K. Singh,et al.  Oxygen reduction reaction and peroxide generation on shape-controlled and polycrystalline platinum nanoparticles in acidic and alkaline electrolytes. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[62]  Zhi-Xun Shen,et al.  Fast vacancy-mediated oxygen ion incorporation across the ceria–gas electrochemical interface , 2014, Nature Communications.

[63]  M. Pumera,et al.  Alternating Misfit Layered Transition/Alkaline Earth Metal Chalcogenide Ca3Co4O9 as a New Class of Chalcogenide Materials for Hydrogen Evolution , 2014 .

[64]  Yong‐Sheng Hu,et al.  New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope. , 2014, Nano letters.

[65]  Hongjie Dai,et al.  Recent advances in zinc-air batteries. , 2014, Chemical Society reviews.

[66]  M. L. Ng,et al.  In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. , 2014, Angewandte Chemie.

[67]  Guangyuan Zheng,et al.  Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction , 2014, Nature Communications.

[68]  P. Bogdanoff,et al.  Evaluation of MnOx, Mn2O3, and Mn3O4 Electrodeposited Films for the Oxygen Evolution Reaction of Water , 2014 .

[69]  Wenzheng Li,et al.  Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[70]  Dan Xu,et al.  3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance , 2014 .

[71]  Nicholas J Porubsky,et al.  A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal , 2014 .

[72]  Nemanja Danilovic,et al.  Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution , 2014, Nature Communications.

[73]  Ruiguo Cao,et al.  Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries. , 2014, Physical chemistry chemical physics : PCCP.

[74]  Jian Zhang,et al.  Porous Perovskite LaNiO3 Nanocubes as Cathode Catalysts for Li-O2 Batteries with Low Charge Potential , 2014, Scientific Reports.

[75]  William G. Hardin,et al.  Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions , 2014 .

[76]  Dingshan Yu,et al.  Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. , 2014, Small.

[77]  Colm O'Dwyer,et al.  Key scientific challenges in current rechargeable non-aqueous Li-O2 batteries: experiment and theory. , 2014, Physical chemistry chemical physics : PCCP.

[78]  A. Manthiram,et al.  Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions , 2014, Nature Communications.

[79]  C. Musgrave,et al.  Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics , 2014 .

[80]  Thomas F. Jaramillo,et al.  A carbon-free, precious-metal-free, high-performance O2 electrode for regenerative fuel cells and metal–air batteries , 2014 .

[81]  Yao Zheng,et al.  Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts , 2014 .

[82]  Francesco Ciucci,et al.  Modeling the impedance response of mixed-conducting thin film electrodes. , 2014, Physical chemistry chemical physics : PCCP.

[83]  S. Boettcher,et al.  Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. , 2014, Journal of the American Chemical Society.

[84]  Min Gyu Kim,et al.  A bifunctional perovskite catalyst for oxygen reduction and evolution. , 2014, Angewandte Chemie.

[85]  Y. Shao-horn,et al.  Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. , 2014, The journal of physical chemistry letters.

[86]  Liquan Chen,et al.  Graphene–Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium–air batteries , 2014 .

[87]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[88]  Daniel G Nocera,et al.  A functionally stable manganese oxide oxygen evolution catalyst in acid. , 2014, Journal of the American Chemical Society.

[89]  T. Schmidt,et al.  Understanding the Influence of Carbon on the Oxygen Reduction and Evolution Activities of BSCF/Carbon Composite Electrodes in Alkaline Electrolyte , 2014 .

[90]  S. Narayanan,et al.  Investigation of Various Calcium-Based Transition Metal Oxides Compounds for the Oxygen Evolution Reaction in Alkaline Media , 2014 .

[91]  Ja-Yeon Choi,et al.  Advanced Extremely Durable 3D Bifunctional Air Electrodes for Rechargeable Zinc‐Air Batteries , 2014 .

[92]  Jane H. Davidson,et al.  Efficient splitting of CO2 in an isothermal redox cycle based on ceria , 2014 .

[93]  A. Aziz,et al.  Electrocatalytic Reduction of Oxygen at Perovskite (BSCF)-MWCNT Composite Electrodes , 2014 .

[94]  I. Takeuchi,et al.  La(0.8)Sr(0.2)MnO(3-δ) decorated with Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ): a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity. , 2014, Journal of the American Chemical Society.

[95]  Drew C. Higgins,et al.  Non‐precious Metal Oxides and Metal Carbides for ORR in Alkaline‐Based Fuel Cells , 2014 .

[96]  A. Alfantazi,et al.  Manganese Dioxide-based Bifunctional Oxygen Reduction/Evolution Electrocatalysts: Effect of Perovskite Doping and Potassium Ion Insertion , 2014 .

[97]  Zongping Shao,et al.  Cobalt-free polycrystalline Ba0.95La0.05FeO3−δ thin films as cathodes for intermediate-temperature solid oxide fuel cells , 2014 .

[98]  Annabella Selloni,et al.  Mechanism and Activity of Water Oxidation on Selected Surfaces of Pure and Fe-Doped NiOx , 2014 .

[99]  K. Ng,et al.  Enhanced capacity for lithium–air batteries using LaFe0.5Mn0.5O3–CeO2 composite catalyst , 2014, Journal of Materials Science.

[100]  R. Kötz,et al.  Composite Electrode Boosts the Activity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite and Carbon toward Oxygen Reduction in Alkaline Media , 2014 .

[101]  Shannon W. Boettcher,et al.  Precise oxygen evolution catalysts: Status and opportunities , 2014 .

[102]  Xingjiu Huang,et al.  Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications. , 2014, ACS applied materials & interfaces.

[103]  C. Jin,et al.  A novel bifunctional catalyst of Ba0.9Co0.5Fe0.4Nb0.1O3−δ perovskite for lithium–air battery , 2014 .

[104]  Jun Cheng,et al.  Modeling the Oxygen Evolution Reaction on Metal Oxides: The Infuence of Unrestricted DFT Calculations , 2014 .

[105]  R. Kötz,et al.  Ba0.5Sr0.5Co0.8Fe0.2O3‐δ Perovskite Activity towards the Oxygen Reduction Reaction in Alkaline Media , 2014 .

[106]  P. Slater,et al.  Development of CaMn1−xRuxO3−y (x = 0 and 0.15) oxygen reduction catalysts for use in low temperature electrochemical devices containing alkaline electrolytes: ex situ testing using the rotating ring-disk electrode voltammetry method , 2014 .

[107]  X. Lou,et al.  Mixed transition-metal oxides: design, synthesis, and energy-related applications. , 2014, Angewandte Chemie.

[108]  C. Berlinguette,et al.  Water Oxidation Catalysis: Survey of Amorphous Binary Metal Oxide Films Containing Lanthanum and Late 3d Transition Metals , 2014 .

[109]  Moran Balaish,et al.  A critical review on lithium-air battery electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[110]  Kyu-Nam Jung,et al.  Graphene/doped ceria nano-blend for catalytic oxygen reduction in non-aqueous lithium-oxygen batteries , 2014 .

[111]  Jun Chen,et al.  Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries. , 2014, Chemical communications.

[112]  Youngsik Kim,et al.  Li-Water Battery with Oxygen Dissolved in Water as a Cathode , 2014 .

[113]  Won‐Hee Ryu,et al.  LaNixCo1-xO3-δ Perovskites as Catalyst Material for Non-Aqueous Lithium-Oxygen Batteries , 2014 .

[114]  T. Fukutsuka,et al.  Catalytic Roles of Perovskite Oxides in Electrochemical Oxygen Reactions in Alkaline Media , 2014 .

[115]  Jiujun Zhang,et al.  Non-noble metal fuel cell catalysts , 2014 .

[116]  Xile Hu,et al.  Enhanced oxygen evolution activity by NiOx and Ni(OH)2 nanoparticles. , 2014, Faraday discussions.

[117]  C. M. Rangel,et al.  Stability of LaNiO3 gas diffusion oxygen electrodes , 2014, Journal of Solid State Electrochemistry.

[118]  Mietek Jaroniec,et al.  Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. , 2013, Angewandte Chemie.

[119]  J. Bassat,et al.  Anisotropic Oxygen Diffusion Properties in Pr2NiO4+δ and Nd2NiO4+δ Single Crystals , 2013 .

[120]  Guntae Kim,et al.  Effect of Mn on the electrochemical properties of a layered perovskite NdBa0.5Sr0.5Co2 − xMnxO5 + δ (x = 0, 0.25, and 0.5) for intermediate-temperature solid oxide fuel cells , 2013 .

[121]  R. Katiyar,et al.  Synthesis and transport properties of La0.67Sr0.33MnO3 conformally-coated on carbon nanotubes , 2013 .

[122]  A. Grimaud,et al.  Oxygen Evolution Activity and Stability of Ba6Mn5O16, Sr4Mn2CoO9, and Sr6Co5O15: The Influence of Transition Metal Coordination , 2013 .

[123]  K. Shimanoe,et al.  Discharge/charge characteristic of Li-air cells using carbon-supported LaMn0.6Fe0.4O3 as an electrocatalyst , 2013 .

[124]  S. Baeck,et al.  Synthesis and electrocatalytic properties of various metals supported on carbon for lithium–air battery , 2013 .

[125]  Tewodros Asefa,et al.  Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide. , 2013, Journal of the American Chemical Society.

[126]  C. Jin,et al.  Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction , 2013 .

[127]  Dragos Neagu,et al.  In situ growth of nanoparticles through control of non-stoichiometry. , 2013, Nature chemistry.

[128]  Charles C. L. McCrory,et al.  Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. , 2013, Journal of the American Chemical Society.

[129]  Thomas F. Jaramillo,et al.  A Precious‐Metal‐Free Regenerative Fuel Cell for Storing Renewable Electricity , 2013 .

[130]  Ying Wang,et al.  Carbon supported MnOx–Co3O4 as cathode catalyst for oxygen reduction reaction in alkaline media , 2013 .

[131]  Klaus Zick,et al.  Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.

[132]  Chunyu Zhu,et al.  Solution combustion synthesis of LaMO3 (M = Fe, Co, Mn) perovskite nanoparticles and the measurement of their electrocatalytic properties for air cathode , 2013 .

[133]  Sergei V. Kalinin,et al.  Probing Bias‐Dependent Electrochemical Gas–Solid Reactions in (LaxSr1–x)CoO3–δ Cathode Materials , 2013 .

[134]  Yungui Chen,et al.  An in situ formed Pd nanolayer as a bifunctional catalyst for Li-air batteries in ambient or simulated air. , 2013, Chemical communications.

[135]  Jong-Won Lee,et al.  Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries. , 2013, ACS applied materials & interfaces.

[136]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[137]  Yang Shao-Horn,et al.  Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution , 2013, Nature Communications.

[138]  J. Sunarso,et al.  Enhancing bi-functional electrocatalytic activity of perovskite by temperature shock: a case study of LaNiO3-δ , 2013 .

[139]  C. Jin,et al.  Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline media , 2013 .

[140]  H. Jeong,et al.  Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ , 2013, Scientific Reports.

[141]  Alexis T. Bell,et al.  An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. , 2013, Journal of the American Chemical Society.

[142]  Michael P. Brandon,et al.  Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. , 2013, Physical chemistry chemical physics : PCCP.

[143]  K. Shimanoe,et al.  Oxygen reduction activity of carbon-supported La1-xCa xMn1-yFeyO3 nanoparticles , 2013 .

[144]  Yang Shao-Horn,et al.  Rate-Dependent Morphology of Li2O2 Growth in Li-O2 Batteries. , 2013, The journal of physical chemistry letters.

[145]  Y. Orikasa,et al.  Layered perovskite oxide: a reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries. , 2013, Journal of the American Chemical Society.

[146]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[147]  Piotr Zelenay,et al.  Nanostructured nonprecious metal catalysts for oxygen reduction reaction. , 2013, Accounts of chemical research.

[148]  Jaephil Cho,et al.  Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst , 2013, Nature Communications.

[149]  Hyung-Kyu Lim,et al.  Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. , 2013, Journal of the American Chemical Society.

[150]  Guozhong Cao,et al.  Nanomaterials for energy conversion and storage. , 2013, Chemical Society reviews.

[151]  Karen Chan,et al.  pH in atomic scale simulations of electrochemical interfaces. , 2013, Physical chemistry chemical physics : PCCP.

[152]  Tom Regier,et al.  An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. , 2013, Journal of the American Chemical Society.

[153]  Guojun Du,et al.  Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries. , 2013, Nanoscale.

[154]  Guosong Hong,et al.  Advanced zinc-air batteries based on high-performance hybrid electrocatalysts , 2013, Nature Communications.

[155]  Haoshen Zhou,et al.  A reversible long-life lithium–air battery in ambient air , 2013, Nature Communications.

[156]  Yang Shao-Horn,et al.  In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. , 2013, Nano letters.

[157]  T. Venkatesan,et al.  Oxygen electrocatalysis on (001)-oriented manganese perovskite films: Mn valency and charge transfer at the nanoscale , 2013 .

[158]  A. Grimaud,et al.  Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS , 2013 .

[159]  Amit Kumar,et al.  Spatially resolved mapping of oxygen reduction/evolution reaction on solid-oxide fuel cell cathodes with sub-10 nm resolution. , 2013, ACS nano.

[160]  Hun‐Gi Jung,et al.  Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. , 2013, ACS nano.

[161]  Zhipan Zhang,et al.  Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis , 2013, Science.

[162]  Xin-bo Zhang,et al.  Synthesis of perovskite-based porous La(0.75)Sr(0.25)MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. , 2013, Angewandte Chemie.

[163]  J. Zhu,et al.  Sm0.5Sr0.5CoO3−δ – A new bi-functional catalyst for rechargeable metal-air battery applications , 2013 .

[164]  Sheng Dai,et al.  Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal-Air Battery Electrodes. , 2013, The journal of physical chemistry letters.

[165]  J. Maier,et al.  Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. , 2013, Physical chemistry chemical physics : PCCP.

[166]  T. Zhao,et al.  Mesoporous carbon with uniquely combined electrochemical and mass transport characteristics for polymer electrolyte membrane fuel cells , 2013 .

[167]  M. Jaroniec,et al.  Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. , 2013, Angewandte Chemie.

[168]  Xin-bo Zhang,et al.  The development and challenges of rechargeable non-aqueous lithium–air batteries , 2013 .

[169]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[170]  Jun Chen,et al.  Enhancing electrocatalytic oxygen reduction on MnO(2) with vacancies. , 2013, Angewandte Chemie.

[171]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[172]  Yiying Wu,et al.  A low-overpotential potassium-oxygen battery based on potassium superoxide. , 2013, Journal of the American Chemical Society.

[173]  Jung-Hyun Kim,et al.  Visualizing oxygen anion transport pathways in NdBaCo2O5+δ by in situ neutron diffraction , 2013 .

[174]  John R. Kitchin,et al.  Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides , 2013 .

[175]  Hailiang Wang,et al.  Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. , 2013, Journal of the American Chemical Society.

[176]  M. Gaultois,et al.  Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[177]  J. Maier,et al.  Formation and migration of oxygen vacancies in La(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ) perovskites: insight from ab initio calculations and comparison with Ba(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ). , 2013, Physical chemistry chemical physics : PCCP.

[178]  M. Busch,et al.  Water Oxidation on MnOx and IrOx: Why Similar Performance? , 2013 .

[179]  Gi Su Park,et al.  A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam. , 2012, Angewandte Chemie.

[180]  Hai-Ping Cheng,et al.  Oxygen Reduction Activity on Perovskite Oxide Surfaces: A Comparative First-Principles Study of LaMnO3, LaFeO3, and LaCrO3 , 2012, 1210.1554.

[181]  T. Zhao,et al.  Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells , 2013 .

[182]  K. Friedrich,et al.  Screening and further investigations on promising bi-functional catalysts for metal–air batteries with an aqueous alkaline electrolyte , 2013, Journal of Applied Electrochemistry.

[183]  Biao Zhang,et al.  Mechanisms of capacity degradation in reduced graphene oxide/α-MnO2 nanorod composite cathodes of Li–air batteries , 2013 .

[184]  Jun Chen,et al.  Porous calcium–manganese oxide microspheres for electrocatalytic oxygen reduction with high activity , 2013 .

[185]  S. Narayanan,et al.  Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells , 2013 .

[186]  Shyue Ping Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .

[187]  M. Shao Electrocatalysis in Fuel Cells , 2013 .

[188]  N. Alonso‐Vante,et al.  Effect of Co substitution for Fe in Sr2FeMoO6 on electrocatalytic properties for oxygen reduction in alkaline medium , 2013, Ionics.

[189]  H. Gasteiger,et al.  The Influence of the Cation on the Oxygen Reduction and Evolution Activities of Oxide Surfaces in Alkaline Electrolyte , 2013, Electrocatalysis.

[190]  T. Ishihara,et al.  Gold–Palladium nanoparticles supported by mesoporous β-MnO2 air electrode for rechargeable Li-Air battery , 2012 .

[191]  Yao Zheng,et al.  Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. , 2012, Small.

[192]  F. Calle‐Vallejo,et al.  First-principles computational electrochemistry: Achievements and challenges , 2012 .

[193]  Si Hyoung Oh,et al.  Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. , 2012, Nature chemistry.

[194]  Jun Chen,et al.  Lithium-air batteries: Something from nothing. , 2012, Nature chemistry.

[195]  M. Jaroniec,et al.  Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. , 2012, Angewandte Chemie.

[196]  Yunlong Zhao,et al.  Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries , 2012, Proceedings of the National Academy of Sciences.

[197]  T. Jaramillo,et al.  Mn3O4 Supported on Glassy Carbon: An Active Non-Precious Metal Catalyst for the Oxygen Reduction Reaction , 2012 .

[198]  Robert Kostecki,et al.  Nanomaterials for renewable energy production and storage. , 2012, Chemical Society reviews.

[199]  Svetlozar Nestorov,et al.  The Computational Materials Repository , 2012, Computing in Science & Engineering.

[200]  A. Grimaud,et al.  Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts , 2012 .

[201]  R. Walton,et al.  Bismuth Iridium Oxide Oxygen Evolution Catalyst from Hydrothermal Synthesis , 2012 .

[202]  L. Nazar,et al.  The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries , 2012 .

[203]  Jaekook Kim,et al.  Ceria based catalyst for cathode in non-aqueous electrolyte based Li/O2 batteries , 2012, Nanotechnology.

[204]  J. Baldwin,et al.  Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes. , 2012, ACS nano.

[205]  A. Yamada,et al.  The nature of lithium battery materials under oxygen evolution reaction conditions. , 2012, Journal of the American Chemical Society.

[206]  Jonathon R. Harding,et al.  In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions , 2012, Scientific Reports.

[207]  M. Hirayama,et al.  Oxygen Evolution and Reduction Reactions on La0.8Sr0.2CoO3 (001), (110), and (111) Surfaces in an Alkaline Solution , 2012 .

[208]  S. Boettcher,et al.  Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. , 2012, Journal of the American Chemical Society.

[209]  K. Shimanoe,et al.  Preparation of nano-LaNiO3 support electrode for rechargeable metal-air batteries , 2012 .

[210]  S. Bent,et al.  Active MnOx Electrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions , 2012 .

[211]  Zongping Shao,et al.  Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells. , 2012, ChemSusChem.

[212]  J. Nørskov,et al.  Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. , 2012, Physical chemistry chemical physics : PCCP.

[213]  B. Liu,et al.  Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells , 2012 .

[214]  Thomas F. Jaramillo,et al.  New cubic perovskites for one- and two-photon water splitting using the computational materials repository , 2012 .

[215]  Haoshen Zhou,et al.  Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li1+xAlyGe2−y(PO4)3 solid electrolyte and carbon nanotube air electrode , 2012 .

[216]  Jian Wang,et al.  Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. , 2012, Journal of the American Chemical Society.

[217]  Yanguang Li,et al.  Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis , 2012, Nano Research.

[218]  K. Müllen,et al.  Efficient Synthesis of Heteroatom (N or S)‐Doped Graphene Based on Ultrathin Graphene Oxide‐Porous Silica Sheets for Oxygen Reduction Reactions , 2012 .

[219]  Zongping Shao,et al.  Systematic evaluation of Co-free LnBaFe2O5+δ (Ln = Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells , 2012 .

[220]  L. Daemen,et al.  Superionic conductivity in lithium-rich anti-perovskites. , 2012, Journal of the American Chemical Society.

[221]  J. Kitchin,et al.  Effects of strain, d-band filling, and oxidation state on the surface electronic structure and reactivity of 3d perovskite surfaces. , 2012, The Journal of chemical physics.

[222]  Jong‐Won Lee,et al.  Promoting Li2O2 oxidation by an La(1.7)Ca(0.3)Ni(0.75)Cu(0.25)O4 layered perovskite in lithium-oxygen batteries. , 2012, Chemical communications.

[223]  Liquan Chen,et al.  Perovskite Sr0.95Ce0.05CoO3−δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries , 2012 .

[224]  Thibault Broux,et al.  Oxygen diffusion mechanism in the mixed ion-electron conductor NdBaCo2O5+x , 2012 .

[225]  H. Stein,et al.  In Situ Electrochemical Electron Microscopy Study of Oxygen Evolution Activity of Doped Manganite Perovskites , 2012 .

[226]  G. D. Varma,et al.  Effect of A-site cation size on magnetic and charge-ordering properties of Ln0.5Sr0.5Mn0.9Cu0.1O3 (Ln = La, Pr, Nd, or Ho) , 2012 .

[227]  Liquan Chen,et al.  Nanostructured ceria-based materials: synthesis, properties, and applications , 2012 .

[228]  W. Chueh,et al.  High electrode activity of nanostructured, columnar ceria films for solid oxide fuel cells , 2012 .

[229]  B. Geng,et al.  Pt nanoparticles residing in the pores of porous LaNiO₃ nanocubes as high-efficiency electrocatalyst for direct methanol fuel cells. , 2012, Nanoscale.

[230]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[231]  E. Antipov,et al.  Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction , 2012 .

[232]  R. Massé,et al.  Development of an O2-sensitive fluorescence-quenching assay for the combinatorial discovery of electrocatalysts for water oxidation. , 2012, Angewandte Chemie.

[233]  Robert W. Black,et al.  Non‐Aqueous and Hybrid Li‐O2 Batteries , 2012 .

[234]  L. Nazar,et al.  Oxide Catalysts for Rechargeable High‐Capacity Li–O2 Batteries , 2012 .

[235]  Meilin Liu,et al.  Facile Synthesis of Nitrogen‐Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen‐Reduction Reaction , 2012 .

[236]  Meilin Liu,et al.  Recent Progress in Non‐Precious Catalysts for Metal‐Air Batteries , 2012 .

[237]  Guangyuan Zheng,et al.  Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst , 2012 .

[238]  Xiao‐Qing Yang,et al.  Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage. , 2012, Nano letters.

[239]  Maria Chan,et al.  Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. , 2012, Nature materials.

[240]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[241]  Klaus Müllen,et al.  3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. , 2012, Journal of the American Chemical Society.

[242]  Chan‐Jin Park,et al.  Al-doped Ceria: A New Cathode Catalyst for Li–O2 Batteries , 2012 .

[243]  K. Stevenson,et al.  Bifunctional Catalysts for Alkaline Oxygen Reduction Reaction via Promotion of Ligand and Ensemble Effects at Ag/MnOx Nanodomains , 2012 .

[244]  W. Chueh,et al.  Highly Enhanced Concentration and Stability of Reactive Ce3+ on Doped CeO2 Surface Revealed In Operando , 2012 .

[245]  Zongping Shao,et al.  Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells , 2012 .

[246]  Yao Zheng,et al.  Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis , 2012 .

[247]  K. Uosaki,et al.  Role of Cerium Oxide in the Enhancement of Activity for the Oxygen Reduction Reaction at Pt–CeOx Nanocomposite Electrocatalyst - An in Situ Electrochemical X-ray Absorption Fine Structure Study , 2012 .

[248]  M. Jaroniec,et al.  Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. , 2012, Angewandte Chemie.

[249]  Vittal K. Yachandra,et al.  Structure-activity correlations in a nickel-borate oxygen evolution catalyst. , 2012, Journal of the American Chemical Society.

[250]  Q. Ma,et al.  In situ growth of metal particles on 3D urchin-like WO3 nanostructures. , 2012, Journal of the American Chemical Society.

[251]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[252]  A. Manivannan,et al.  Electrocatalytic Properties of Nanocrystalline Calcium-Doped Lanthanum Cobalt Oxide for Bifunctional Oxygen Electrodes. , 2012, The journal of physical chemistry letters.

[253]  E. Takayama-Muromachi,et al.  Oxyfluoride Chemistry of Layered Perovskite Compounds , 2012 .

[254]  J. Osán,et al.  Nanostructured MnOx as highly active catalyst for CO oxidation , 2012 .

[255]  Jun Chen,et al.  Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. , 2012, Chemical Society reviews.

[256]  J. Sunarso,et al.  Oxygen reduction reaction activity of la-based perovskite oxides in alkaline medium: A thin-film rotating ring-disk electrode study , 2012 .

[257]  Hongwei Zhang,et al.  Recent development of polymer electrolyte membranes for fuel cells. , 2012, Chemical reviews.

[258]  J. Kilner,et al.  Anisotropic Oxygen Ion Diffusion in Layered PrBaCo2O5+δ , 2012 .

[259]  Jean-Marie Tarascon,et al.  Erratum: Li–O 2 and Li–S batteries with high energy storage , 2012 .

[260]  Bing Sun,et al.  Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance , 2012 .

[261]  Shouheng Sun,et al.  FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. , 2012, Journal of the American Chemical Society.

[262]  H. Dai,et al.  Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. , 2012, Journal of the American Chemical Society.

[263]  Z. Yao,et al.  Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. , 2012, ACS nano.

[264]  Peng-Cheng Ma,et al.  Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review , 2012 .

[265]  B. Downing Metal–Air Technology , 2012 .

[266]  Hui Li,et al.  Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. , 2011, Nano letters.

[267]  T. Zhao,et al.  Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells , 2012 .

[268]  Zongping Shao,et al.  A new way to increase performance of oxide electrode for oxygen reduction using grain growth inhibitor , 2012 .

[269]  A. Galal,et al.  Catalytic Activity toward Oxygen Evolution of LaFeO3 Prepared by the Microwave Assisted Citrate Method , 2012 .

[270]  A. Kahoul,et al.  Double perovskite oxides Sr2MMoO6 (M = Fe and Co) as cathode materials for oxygen reduction in alkaline medium , 2012 .

[271]  Jitendra Kumar,et al.  Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries. , 2012, ACS applied materials & interfaces.

[272]  W. Chueh,et al.  High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. , 2012, Nature materials.

[273]  Jens K. Nørskov,et al.  Optimizing Perovskites for the Water-Splitting Reaction , 2011, Science.

[274]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[275]  Ermete Antolini,et al.  The use of rare earth-based materials in low-temperature fuel cells , 2011 .

[276]  Sean C. Smith,et al.  Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. , 2011, Journal of the American Chemical Society.

[277]  Meilin Liu,et al.  Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives , 2011 .

[278]  Michele Pavone,et al.  Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials , 2011 .

[279]  Meilin Liu,et al.  Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions. , 2011, Nano letters.

[280]  H. Tuller,et al.  A New Model Describing Solid Oxide Fuel Cell Cathode Kinetics: Model Thin Film SrTi1‐xFexO3‐δ Mixed Conducting Oxides–a Case Study , 2011 .

[281]  Jin-Cherng Shyu,et al.  Performance of proton exchange membrane fuel cells at elevated temperature , 2011 .

[282]  Z. Wen,et al.  A free-standing-type design for cathodes of rechargeable Li–O2 batteries , 2011 .

[283]  S. Suib,et al.  Oxygen Reduction Properties of Bifunctional α-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes , 2011 .

[284]  W. Bennett,et al.  Hierarchically porous graphene as a lithium-air battery electrode. , 2011, Nano letters.

[285]  C. Pak,et al.  Ceria-promoted oxygen reduction reaction in Pd-based electrocatalysts , 2011 .

[286]  Zongping Shao,et al.  A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration , 2011 .

[287]  Byeong-Su Kim,et al.  Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries , 2011 .

[288]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[289]  Jaclyn D. Wiggins-Camacho,et al.  Mechanistic Discussion of the Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes , 2011 .

[290]  D. Scanlon,et al.  Role of Lattice Distortions in the Oxygen Storage Capacity of Divalently Doped CeO2 , 2011 .

[291]  Emily A. Carter,et al.  Effect of Antisite Defects on the Formation of Oxygen Vacancies in Sr2FeMoO6: Implications for Ion and Electron Transport , 2011 .

[292]  Mari-Ann Einarsrud,et al.  One‐Dimensional Nanostructures of Ferroelectric Perovskites , 2011, Advanced materials.

[293]  D. Ou,et al.  Stability of ceria supports in Pt-CeOx/C catalysts , 2011 .

[294]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[295]  Amit Kumar,et al.  Measuring oxygen reduction/evolution reactions on the nanoscale. , 2011, Nature chemistry.

[296]  H. Dai,et al.  Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. , 2011, Nature materials.

[297]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[298]  Guntae Kim,et al.  High Performance SOFC Cathode Prepared by Infiltration of La n + 1Ni n O3 n + 1 (n = 1, 2, and 3) in Porous YSZ , 2011 .

[299]  J. Martynczuk,et al.  Tailoring of LaxSr1‐xCoyFe1‐yO3‐δ Nanostructure by Pulsed Laser Deposition , 2011 .

[300]  Dc Kitty Nijmeijer,et al.  Anion exchange membranes for alkaline fuel cells: A review , 2011 .

[301]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[302]  Zhen Yao,et al.  Facile construction of manganese oxide doped carbon nanotube catalysts with high activity for oxygen reduction reaction and investigations into the origin of their activity enhancement. , 2011, ACS applied materials & interfaces.

[303]  K. M. Abraham,et al.  Lithium-air and lithium-sulfur batteries , 2011 .

[304]  Xueliang Sun,et al.  Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries , 2011 .

[305]  R. Savinell Oxygen-reduction catalysts: picking perovskites. , 2011, Nature chemistry.

[306]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[307]  J Rossmeisl,et al.  On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides. , 2011, The Journal of chemical physics.

[308]  Zhi-You Zhou,et al.  Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. , 2011, Chemical Society reviews.

[309]  Zongping Shao,et al.  Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ mixed conductor , 2011 .

[310]  Lin Shao,et al.  Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. , 2011, ACS nano.

[311]  Suli Wang,et al.  One step synthesis of carbon-supported Ag/MnyOx composites for oxygen reduction reaction in alkaline media , 2011 .

[312]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[313]  Jiujun Zhang,et al.  Electrocatalytic Activities of La0.6Ca0.4CoO3 and La0.6Ca0.4CoO3-Carbon Composites Toward the Oxygen Reduction Reaction in Concentrated Alkaline Electrolytes , 2011 .

[314]  J. Santiso,et al.  Deposition and characterisation of epitaxial oxide thin films for SOFCs , 2011 .

[315]  N. Yamazoe,et al.  Bi-functional oxygen electrodes using LaMnO3/LaNiO3 for rechargeable metal-air batteries , 2011 .

[316]  Gang Wu,et al.  High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt , 2011, Science.

[317]  Ke‐long Huang,et al.  Preparation of silver-modified La0.6Ca0.4CoO3 binary electrocatalyst for bi―functional air electrodes in alkaline medium , 2011 .

[318]  N. Okazaki,et al.  Activity of oxygen reduction reaction on small amount of amorphous CeOx promoted Pt cathode for fuel cell application , 2011 .

[319]  Ke‐long Huang,et al.  Preparation of homogeneous nanoporous La0.6Ca0.4CoO3 for bi-functional catalysis in an alkaline electrolyte , 2011 .

[320]  N. Yamazoe,et al.  Durability of Carbon-Supported La-Mn-Based Perovskite-Type Oxides as Oxygen Reduction Catalysts in Strong Alkaline Solution , 2011 .

[321]  Haoshen Zhou,et al.  Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. , 2011, ACS nano.

[322]  B. Yildiz,et al.  New Insights into the Strain Coupling to Surface Chemistry, Electronic Structure, and Reactivity of La0.7Sr0.3MnO3 , 2011 .

[323]  R. Li,et al.  High oxygen-reduction activity and durability of nitrogen-doped graphene , 2011 .

[324]  Minhua Shao,et al.  Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions , 2011 .

[325]  D. Ivey,et al.  Electrocatalytic Activity of Non-Stoichiometric Perovskites toward Oxygen Reduction Reaction in Alkaline Electrolytes , 2011 .

[326]  A. Chroneos,et al.  Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ , 2011 .

[327]  Zongping Shao,et al.  New Ba0.5Sr0.5Co0.8Fe0.2O3−δ + Co3O4 composite electrode for IT-SOFCs with improved electrical conductivity and catalytic activity , 2011 .

[328]  T. Fukutsuka,et al.  Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities , 2011 .

[329]  C. Fisher,et al.  Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery , 2011 .

[330]  F. Tao,et al.  In Situ Studies of Chemistry and Structure of Materials in Reactive Environments , 2011, Science.

[331]  Young Beom Kim,et al.  Epitaxial and Polycrystalline Gadolinia-Doped Ceria Cathode Interlayers for Low Temperature Solid Oxide Fuel Cells , 2011 .

[332]  John B. Goodenough,et al.  CoMn2O4 Spinel Nanoparticles Grown on Graphene as Bifunctional Catalyst for Lithium-Air Batteries , 2011 .

[333]  W. Chueh,et al.  High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria , 2010, Science.

[334]  Jean-Marie Tarascon,et al.  H2O2 Decomposition Reaction as Selecting Tool for Catalysts in Li – O2 Cells , 2010 .

[335]  Ping He,et al.  A Li-air fuel cell with recycle aqueous electrolyte for improved stability , 2010 .

[336]  K. Ota,et al.  Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells , 2010 .

[337]  Zongping Shao,et al.  High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells , 2010 .

[338]  Zongping Shao,et al.  Assessment of PrBaCo2O5+δ + Sm0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells , 2010 .

[339]  R. Walton,et al.  Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. , 2010, Chemical Society reviews.

[340]  Lei Jin,et al.  Titanium Containing γ‐MnO2 (TM) Hollow Spheres: One‐Step Synthesis and Catalytic Activities in Li/Air Batteries and Oxidative Chemical Reactions , 2010 .

[341]  Thomas Bligaard,et al.  Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations , 2010 .

[342]  Kuan-Wen Wang,et al.  Surface species alteration and oxygen reduction reaction enhancement of Pd-Co/C electrocatalysts induced by ceria modification. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[343]  J. Maier,et al.  First-principles modelling of complex perovskite (Ba1-xSrx)(Co1-yFey)O3-δ for solid oxide fuel cell and gas separation membrane applications , 2010 .

[344]  H. Dai,et al.  Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. , 2010, Journal of the American Chemical Society.

[345]  T. Jaramillo,et al.  A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. , 2010, Journal of the American Chemical Society.

[346]  Lei Zhang,et al.  Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries , 2010 .

[347]  Ben Wang,et al.  Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes , 2010 .

[348]  H. Gasteiger,et al.  Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode , 2010 .

[349]  Christian Limberg,et al.  The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis , 2010 .

[350]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[351]  E. Wachsman,et al.  Novel Y2−xPrxRu2O7 (x=0–2) Pyrochlore Oxides Prepared Using a Soft Chemistry Route and their Electrical Properties , 2010 .

[352]  A. Chroneos,et al.  Molecular dynamics study of oxygen diffusion in Pr(2)NiO(4+delta). , 2010, Physical chemistry chemical physics : PCCP.

[353]  S. Mukerjee,et al.  Enhanced Pt stability in MO2 (M = Ce, Zr or Ce0.9Zr0.1)-promoted Pt/C electrocatalysts for oxygen reduction reaction in PAFCs , 2010 .

[354]  D. Kirk,et al.  Ag and Ag–Mn nanowire catalysts for alkaline fuel cells , 2010 .

[355]  Pu-Wei Wu,et al.  Synthesis and Characterization of La0.6Ca0.4Co0.8Ru0.2O3 for Oxygen Reduction Reaction in an Alkaline Electrolyte , 2010 .

[356]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[357]  Lei Zhang,et al.  Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. , 2010, Chemical Society reviews.

[358]  L. Spiccia,et al.  Development of Bioinspired Mn4O4—Cubane Water Oxidation Catalysts: Lessons from Photosynthesis , 2010 .

[359]  J. Kilner,et al.  Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells , 2010 .

[360]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[361]  F. Jiao,et al.  Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. , 2010, Chemical communications.

[362]  Zhen Wei,et al.  Polarization of Oxygen Electrode in Rechargeable Lithium Oxygen Batteries , 2010 .

[363]  Wei Qu,et al.  A review on air cathodes for zinc–air fuel cells , 2010 .

[364]  Ji‐Guang Zhang,et al.  Hybrid Air-Electrode for Li/Air Batteries , 2010 .

[365]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[366]  Rongrong Chen,et al.  Improving Oxygen Reduction Reaction Activities on Carbon-Supported Ag Nanoparticles in Alkaline Solutions , 2010 .

[367]  Hailiang Wang,et al.  Nanocrystal growth on graphene with various degrees of oxidation. , 2010, Journal of the American Chemical Society.

[368]  Tianshou Zhao,et al.  Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells , 2010 .

[369]  Y. Liu,et al.  Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. , 2010, ACS nano.

[370]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[371]  Jun Chen,et al.  MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media† , 2010 .

[372]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[373]  N. Kruse,et al.  High Catalytic Activity in CO Oxidation over MnOx Nanocrystals , 2010 .

[374]  Eugene A. Kotomin,et al.  Pathways for Oxygen Incorporation in Mixed Conducting Perovskites: A DFT-Based Mechanistic Analysis for (La, Sr)MnO3−δ , 2010 .

[375]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[376]  Peter Hall,et al.  Preparation of controlled porosity carbon-aerogels for energy storage in rechargeable lithium oxygen batteries , 2009 .

[377]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[378]  L. Spiccia,et al.  Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. , 2009, Accounts of chemical research.

[379]  M. Arenz,et al.  Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. , 2009, Journal of the American Chemical Society.

[380]  H. Dai,et al.  Simultaneous nitrogen doping and reduction of graphene oxide. , 2009, Journal of the American Chemical Society.

[381]  M. R. Nunes,et al.  Properties of Ca1―xHoxMnO3 perovskite-type electrodes , 2009 .

[382]  A S Bondarenko,et al.  Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. , 2009, Nature chemistry.

[383]  A. Azizi,et al.  Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium , 2009 .

[384]  W. Chueh,et al.  Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H(2)O and CO(2). , 2009, ChemSusChem.

[385]  Younan Xia,et al.  Pd—Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. , 2009 .

[386]  Kimihisa Yamamoto,et al.  Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. , 2009, Nature chemistry.

[387]  Zongping Shao,et al.  Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review , 2009 .

[388]  M. Ribeiro Carrott,et al.  Preparation and characterization of Ca1 − xCexMnO3 perovskite electrodes , 2009 .

[389]  H. Dai,et al.  N-Doping of Graphene Through Electrothermal Reactions with Ammonia , 2009, Science.

[390]  Y. Uchimoto,et al.  Electrocatalytic Activity of the Pyrochlores Ln2M2O7−δ (Ln = Lanthanoids) for Oxygen Reduction Reaction , 2009 .

[391]  Pu-Wei Wu,et al.  Synthesis of La0.6Ca0.4Co0.8Ir0.2O3 perovskite for bi-functional catalysis in an alkaline electrolyte , 2009 .

[392]  Frédéric Jaouen,et al.  Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells , 2009, Science.

[393]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[394]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[395]  J. Tulloch,et al.  Activity of perovskite La1−xSrxMnO3 catalysts towards oxygen reduction in alkaline electrolytes , 2009 .

[396]  Zongping Shao,et al.  Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte , 2009 .

[397]  B. Fang,et al.  Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell. , 2009, Physical chemistry chemical physics : PCCP.

[398]  F. Du,et al.  Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction , 2009, Science.

[399]  Jun Chen,et al.  Selective synthesis of manganese oxide nanostructures for electrocatalytic oxygen reduction. , 2009, ACS applied materials & interfaces.

[400]  A. Züttel,et al.  Synthesis of carbon nanotubes on La0.6Sr0.4CoO3 as substrate , 2009 .

[401]  Tao Zhang,et al.  Li∕Polymer Electrolyte∕Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte , 2008 .

[402]  L. Archer,et al.  Hollow Micro‐/Nanostructures: Synthesis and Applications , 2008 .

[403]  L. Archer,et al.  Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties , 2008 .

[404]  Zongping Shao,et al.  Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs , 2008 .

[405]  A. Züttel,et al.  Electrochemical characterisation of air electrodes based on La0.6Sr0.4CoO3 and carbon nanotubes , 2008 .

[406]  Lin Zhuang,et al.  Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts , 2008, Proceedings of the National Academy of Sciences.

[407]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[408]  Haoshen Zhou,et al.  Synthesis of single crystalline electro-conductive Na0.44MnO2 nanowires with high aspect ratio for the fast charge–discharge Li ion battery , 2008 .

[409]  Jaka Sunarso,et al.  Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation , 2008 .

[410]  K. Ota,et al.  Catalytic Activity of Zirconium Oxynitride Prepared by Reactive Sputtering for ORR in Sulfuric Acid , 2008 .

[411]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[412]  Edmar P. Marques,et al.  A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction , 2008 .

[413]  Hong Lin,et al.  Core–Ring Structured NiCo2O4 Nanoplatelets: Synthesis, Characterization, and Electrocatalytic Applications , 2008 .

[414]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[415]  R. Martel,et al.  LaFexMoyMnzO3 perovskite as catalyst precursors for the CVD synthesis of carbon nanotubes , 2008 .

[416]  Ho-In Lee,et al.  The effect of cerium oxide nanoparticles on a Pt/C electrocatalyst synthesized by a continuous two-step process for low-temperature fuel cell , 2008 .

[417]  Fei Teng,et al.  Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation , 2008 .

[418]  M. Armand,et al.  Building better batteries , 2008, Nature.

[419]  S. Suib,et al.  3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method , 2008 .

[420]  P. Bruce,et al.  An O2 cathode for rechargeable lithium batteries: The effect of a catalyst , 2007 .

[421]  Edward F. Holby,et al.  Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells , 2007 .

[422]  Haiyan Wang,et al.  Nanostructured cathode thin films with vertically-aligned nanopores for thin film SOFC and their characteristics , 2007 .

[423]  Jürgen Fleig,et al.  Quantitative Comparison of Mixed Conducting SOFC Cathode Materials by Means of Thin Film Model Electrodes , 2007 .

[424]  Zongping Shao,et al.  Assessment of Ba0.5Sr0.5Co1- yFeyO3- δ (y = 0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane , 2007 .

[425]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[426]  H. Baltruschat,et al.  Investigation of the oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and on-line mass spectrometry , 2007 .

[427]  S. Alia,et al.  New Synthetic Route, Characterization, and Electrocatalytic Activity of Nanosized Manganite. , 2007 .

[428]  H. Jónsson,et al.  Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. , 2007, Physical chemistry chemical physics : PCCP.

[429]  C. Mims,et al.  Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations , 2007 .

[430]  Rajshree Singh,et al.  Novel electrocatalysts for generating oxygen from alkaline water electrolysis , 2007 .

[431]  V. Kharton,et al.  Oxygen non-stoichiometry of Ln4Ni2.7Fe0.3O10−δ (Ln=La, Pr) , 2007 .

[432]  J. Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[433]  Zongping Shao,et al.  Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3- δ perovskite as oxygen semi-permeable membrane , 2007 .

[434]  S. Alia,et al.  New Synthetic Route, Characterization, and Electrocatalytic Activity of Nanosized Manganite , 2007 .

[435]  E. Ticianelli,et al.  Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction , 2007 .

[436]  M. Salomon,et al.  Li-air batteries: A classic example of limitations owing to solubilities , 2007 .

[437]  Eric Chainet,et al.  Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism , 2007 .

[438]  Yoichi Ando,et al.  Fast oxygen diffusion in A-site ordered perovskites , 2007 .

[439]  M. Döbeli,et al.  Perovskite thin films deposited by pulsed laser ablation as model systems for electrochemical applications , 2007 .

[440]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[441]  Piotr Zelenay,et al.  A class of non-precious metal composite catalysts for fuel cells , 2006, Nature.

[442]  C. Yeh,et al.  Promotion of platinum–ruthenium catalyst for electro-oxidation of methanol by ceria , 2006 .

[443]  E. Ticianelli,et al.  Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions , 2006 .

[444]  Yunhui Huang,et al.  Double Perovskites as Anode Materials for Solid‐Oxide Fuel Cells. , 2006 .

[445]  David Harrison,et al.  A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells , 2006 .

[446]  E. Ticianelli,et al.  Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media , 2006 .

[447]  I. Davidson,et al.  A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n = 1, 2 and 3), for solid-oxide fuel-cell cathode applications , 2006 .

[448]  Jens K Nørskov,et al.  Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. , 2006, Angewandte Chemie.

[449]  Ludwig Jörissen,et al.  Bifunctional oxygen/air electrodes , 2006 .

[450]  John B Goodenough,et al.  Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells , 2006, Science.

[451]  A. Manthiram,et al.  Comparison of Ln0.6Sr0.4CoO3 − δ (Ln = La , Pr, Nd, Sm, and Gd) as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells , 2006 .

[452]  M. Shao,et al.  Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. , 2006, Journal of the American Chemical Society.

[453]  T. Zhao,et al.  Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. , 2006, The journal of physical chemistry. B.

[454]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[455]  J. Nørskov,et al.  Electrolysis of water on (oxidized) metal surfaces , 2005 .

[456]  Bin Wang,et al.  Recent development of non-platinum catalysts for oxygen reduction reaction , 2005 .

[457]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[458]  Jun Chen,et al.  Synthesis and Application of La0.59Ca0.41CoO3 Nanotubes , 2005 .

[459]  M. Döbeli,et al.  Can thin perovskite film materials be applied as model systems for battery applications , 2005 .

[460]  B. Lal,et al.  Electrocatalytic properties of perovskite-type La1-xSrxCoO3(0⩽x⩽0.4) obtained by a novel stearic acid sol–gel method for electrocatalysis of O2 evolution in KOH solutions , 2005 .

[461]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[462]  R. Slade,et al.  Prospects for Alkaline Anion‐Exchange Membranes in Low Temperature Fuel Cells , 2005 .

[463]  Junliang Zhang,et al.  Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. , 2005, Angewandte Chemie.

[464]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[465]  K. Stevenson,et al.  Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. , 2005, The journal of physical chemistry. B.

[466]  Jonghee Han,et al.  Development of nanophase CeO2-Pt/C cathode catalyst for direct methanol fuel cell , 2005 .

[467]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[468]  T. Katsumata,et al.  Flux growth and physical properties of pyrochlore Pb2Ru2O6.5 single crystals , 2004 .

[469]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[470]  M. Mavrikakis,et al.  Alloy catalysts designed from first principles , 2004, Nature materials.

[471]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[472]  N. Yamazoe,et al.  Reverse Micelle-Based Preparation of Carbon-Supported La1 − x Sr x Mn1 − y Fe y O 3 + δ for Oxygen Reduction Electrode , 2004 .

[473]  N. Yamazoe,et al.  Preparation of Carbon-Supported Perovskite-Type Oxides LaMn1 − y Fe y O 3 + δ Based on Reverse Homogeneous Precipitation Method , 2004 .

[474]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[475]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[476]  N. Yamazoe,et al.  Exploration of Reverse Micelle Synthesis of Carbon-Supported LaMnO3 , 2004 .

[477]  V. Caignaert,et al.  Thermoelectric power of HoBaCo2O5.5: possible evidence of the spin blockade in cobaltites. , 2004, Physical review letters.

[478]  J. Schoonman,et al.  Synthesis and characterisation of La1−xSrxCoO3 with large surface area , 2004 .

[479]  A. Hammouche,et al.  Electrocatalytic activity and stability of La1–xCaxCoO3 perovskite-type oxides in alkaline medium , 2004 .

[480]  Dan Luo,et al.  Electrocatalytic activities of REMn2O5 (RE = Dy, Ho, Er, Tm, Yb, and Lu) and Er0.76Zr 0.11Ca0.13Mn2O5 for oxygen reduction in alkaline solution , 2004 .

[481]  Xiaogang Zhang,et al.  A new air electrode based on carbon nanotubes and Ag–MnO2 for metal air electrochemical cells , 2004 .

[482]  Piotr Jasinski,et al.  Nanocrystalline undoped ceria oxygen sensor , 2003 .

[483]  Yuliang Cao,et al.  The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution , 2003 .

[484]  N. Wu,et al.  Effect of oxygenation on electrocatalysis of La0.6Ca0.4CoO3−x in bifunctional air electrode , 2003 .

[485]  Jingsi Yang,et al.  Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions , 2003 .

[486]  Z. Qi,et al.  Effect of oxygen storage materials on the performance of proton-exchange membrane fuel cells , 2003 .

[487]  Ravindra Singh,et al.  Electrocatalytic properties of perovskite-type La1−xSrxMnO3 obtained by a novel sol–gel route for O2 evolution in KOH solutions , 2002 .

[488]  T. Lippert,et al.  Ln1‐xAxCoO3 (Ln: Er, La; A: Ca, Sr)/Carbon Nanotube Composite Materials Applied for Rechargeable Zn/Air Batteries. , 2002 .

[489]  M. Balasubramanian,et al.  X-ray absorption and diffraction studies of La0.6Ca0.4CoO3 perovskite, a catalyst for bifunctional oxygen electrodes , 2002 .

[490]  T. Okamoto,et al.  Self-regeneration of a Pd-perovskite catalyst for automotive emissions control , 2002, Nature.

[491]  Jiří Vondrák,et al.  MnOx/C composites as electrode materials II. Reduction of oxygen on bifunctional catalysts based on manganese oxides , 2002 .

[492]  M. Döbeli,et al.  Pulsed laser deposition of La0.6Ca0.4CoO3(LCCO) films. A promising metal-oxide catalyst for air based batteries , 2002 .

[493]  Thomas Lippert,et al.  Ln1-xAxCoO3 (Ln = Er, La; A = Ca, Sr)/carbon nanotube composite materials applied for rechargeable Zn/air batteries , 2002 .

[494]  M. Misono,et al.  Advances in Designing Perovskite Catalysts. , 2002 .

[495]  Y. Kiros,et al.  La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes , 2002 .

[496]  R. Singh,et al.  High surface area lanthanum cobaltate and its A and B sites substituted derivatives for electrocatalysis of O2 evolution in alkaline solution , 2002 .

[497]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[498]  J. Fierro,et al.  Correlation of Oxidation States in LaFexNi1-xO3+δ Oxides with Catalytic Activity for H2O2 Decomposition , 2001 .

[499]  M. A. Peña,et al.  Chemical Structures and Performance of Perovskite Oxides , 2001 .

[500]  V. Sadykov,et al.  Real structure and catalytic activity of La1−xSrxCoO3 perovskites , 2001 .

[501]  J. Fierro,et al.  Hydrogen peroxide decomposition over Ln1-xAxMnO3 (Ln = La or Nd and A = K or Sr) perovskites , 2001 .

[502]  Volkmar M. Schmidt,et al.  Influence of CO2 on the stability of bifunctional oxygen electrodes for rechargeable zinc/air batteries and study of different CO2 filter materials , 2001 .

[503]  Zongping Shao,et al.  Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane , 2000 .

[504]  Sergio Trasatti,et al.  Electrocatalysis: understanding the success of DSA® , 2000 .

[505]  M. Islam,et al.  Defect chemistry and surface properties of LaCoO3 , 2000 .

[506]  Jai Prakash,et al.  Investigations of ruthenium pyrochlores as bifunctional oxygen electrodes , 1999 .

[507]  S. A. Barnett,et al.  A direct-methane fuel cell with a ceria-based anode , 1999, Nature.

[508]  O. Haas,et al.  Optimized zinc electrode for the rechargeable zinc–air battery , 1998 .

[509]  K. Striebel,et al.  Thermal treatment of La{sub 0.6}Ca{sub 0.4}CoO{sub 3} perovskites for bifunctional air electrodes , 1997 .

[510]  S. Takai,et al.  Properties of the perovskite-type oxide ceramic Ca1 − xLa2x3MnO3 − δ as the cathode active materials in alkaline batteries , 1997 .

[511]  R. Rocheleau,et al.  Electrochemical Behavior of Reactively Sputtered Iron‐Doped Nickel Oxide , 1997 .

[512]  Naveen Singh,et al.  Electrocatalytic activity of high specific surface area perovskite-type LaNiO3 via sol-gel route for electrolytic oxygen evolution in alkaline solution , 1997 .

[513]  N. Yamazoe,et al.  Praseodymium–calcium manganites (Pr1−xCaxMnO3) as electrode catalyst for oxygen reduction in alkaline solution , 1997 .

[514]  N. Yamazoe,et al.  Catalytic activities of rare-earth manganites for cathodic reduction of oxygen in alkaline solution , 1996 .

[515]  Thomas J. Richardson,et al.  Lithium insertion processes of orthorhombic Na{sub x}MnO{sub 2}-based electrode materials , 1996 .

[516]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[517]  S. Singh,et al.  Effects of Ni, Fe, Cu, and Cr Substitutions for Co in La0.8Sr0.2CoO3 on Electrocatalytic Properties for Oxygen Evolution , 1996 .

[518]  T. Esaka,et al.  Control of oxygen deficiency in Ca1−xLaxMnO3−δ and its cathodic properties in alkaline solution , 1996 .

[519]  H. Morimoto,et al.  Nonstoichiometry of Sintered Oxide Ca0.9La0.1MnO3 ‐ δ and Its Cathodic Properties in Alkaline Solutions , 1996 .

[520]  Sarma,et al.  Electronic structure of early 3d-transition-metal oxides by analysis of the 2p core-level photoemission spectra. , 1996, Physical review. B, Condensed matter.

[521]  R. Kötz,et al.  Oxygen evolution and reduction on iridium oxide compounds , 1995 .

[522]  Tatsumi Ishihara,et al.  Doped PrMnO3 Perovskite Oxide as a New Cathode of Solid Oxide Fuel Cells for Low Temperature Operation , 1995 .

[523]  P. Ross,et al.  A Study of Bismuth Ruthenate as an Electrocatalyst for Bifunctional Air Electrodes , 1994 .

[524]  A. Rousset,et al.  Nonstoichiometry-activity relationship in perovskite-like manganites , 1994 .

[525]  R. Carbonio,et al.  Study of the heterogeneous decomposition of hydrogen peroxide: its application to the development of catalysts for carbon-based oxygen cathodes☆ , 1992 .

[526]  H. Morimoto,et al.  Nonstoichiometry in perovskite-type oxide Ca1−xCexMnO3−δ and its properties in alkaline solution , 1992 .

[527]  N. Yamazoe,et al.  Bi-functional Oxygen Electrode Using Large Surface Area Perovskite-type Oxide Catalyst for Rechargeable Metal-Air Batteries , 1992 .

[528]  K. Lian,et al.  The electrocatalytic activity of amorphous and crystalline NiCo alloys on the oxygen evolution reaction , 1992 .

[529]  J. Prakash,et al.  Transition-Metal Oxide Electrocatalysts for O2 Electrodes: The Pyrochlores , 1992 .

[530]  R. Metzger,et al.  Why are some oxides metallic, while most are insulating? , 1991 .

[531]  M. S. Hegde,et al.  Effect of counter cations on electrocatalytic activity of oxide pyrochlores towards oxygen reduction/evolution in alkaline medium: an electrochemical and spectroscopic study , 1991 .

[532]  N. Yamazoe,et al.  Bi‐Functional Oxygen Electrode Using Large Surface Area La1‐xCaxCoO3 for Rechargeable Metal‐Air Battery. , 1991 .

[533]  J. Goodenough,et al.  Surface protonation and electrochemical activity of oxides in aqueous solution , 1990 .

[534]  D. Corrigan,et al.  Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in 1M KOH , 1989 .

[535]  E. Yeager,et al.  Perovskite-type oxides: Oxygen electrocatalysis and bulk structure , 1988 .

[536]  P. Hagenmuller,et al.  Electrolytic Oxygen Evolution in Alkaline Medium on La1 − x Sr x FeO3 − y Perovskite‐Related Ferrites II . Influence of Bulk Properties , 1987 .

[537]  P. Hagenmuller,et al.  Electrolytic oxygen evolution in alkaline medium on La/sub 1-x/Sr/sub x/FeO/sub 3-y/ perovskite-related ferrites. I. Electrochemical study , 1987 .

[538]  D. Corrigan The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes , 1987 .

[539]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[540]  E. Sato,et al.  Electrocatalytic properties of transition metal oxides for oxygen evolution reaction , 1986 .

[541]  S. Trasatti Electrocatalysis in the anodic evolution of oxygen and chlorine , 1984 .

[542]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[543]  J. Longo,et al.  Oxygen Electrocatalysis on Some Oxide Pyrochlores , 1983 .

[544]  J. Bockris,et al.  Mechanism of oxygen evolution on perovskites , 1983 .

[545]  J. Bockris,et al.  Lanthanum Nickelate as Electrocatalyst: Oxygen Evolution , 1982 .

[546]  John B. Goodenough,et al.  LixCoO2 (0, 1981 .

[547]  H. Beer The Invention and Industrial Development of Metal Anodes , 1980 .

[548]  S. Trasatti Electrocatalysis by oxides — Attempt at a unifying approach , 1980 .

[549]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[550]  C. Iwakura,et al.  A consideration of the activation energy for the chlorine evolution reaction on RuO2 and IrO2 electrodes , 1979 .

[551]  T. Kudo,et al.  PEROVSKITE-TYPE COMPOUNDS AS ELECTRODE CATALYSTS FOR CATHODIC REDUCTION OF OXYGEN , 1978 .

[552]  Y. Matsumoto,et al.  The Mechanism of Oxygen Reduction at a LaNiO3 Electrode , 1978 .

[553]  A. Tseung,et al.  Oxygen evolution on semiconducting oxides , 1977 .

[554]  O. J. Murphy,et al.  The oxygen electrode. Part 8.—Oxygen evolution at ruthenium dioxide anodes , 1977 .

[555]  J. P. Remeika,et al.  Perovskite-like La1−xKxMnO3 and related compounds: Solid state chemistry and the catalysis of the reduction of NO by CO and H2 , 1975 .

[556]  D. Dowden Crystal and Ligand Field Models of Solid Catalysts , 1972 .

[557]  D. Meadowcroft,et al.  Low-cost Oxygen Electrode Material , 1970, Nature.

[558]  J. Bockris Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen , 1956 .

[559]  P. Rüetschi,et al.  Influence of Electrode Material on Oxygen Overvoltage: A Theoretical Analysis , 1955 .

[560]  A. Hickling,et al.  Oxygen overvoltage. Part I. The influence of electrode material, current density, and time in aqueous solution , 1947 .