Comparison of theoretical and computational characteristics of dimensionality reduction methods for large-scale uncertain systems

Abstract Synthesizing optimal controllers for large scale uncertain systems is a challenging computational problem. This has motivated the recent interest in developing polynomial-time algorithms for computing reduced dimension models for uncertain systems. Here we present algorithms that compute lower dimensional realizations of an uncertain system, and compare their theoretical and computational characteristics. Three polynomial-time dimensionality reduction algorithms are applied to the Shell Standard Control Problem, a continuous stirred-tank reactor (CSTR) control problem, and a large scale benchmark problem, where it is shown that the algorithms can reduce the computational effort of optimal controller synthesis by orders of magnitude. These algorithms allow robust controller synthesis and robust control structure selection to be applied to uncertain systems of increased dimensionality.

[1]  R. Braatz,et al.  A tutorial on linear and bilinear matrix inequalities , 2000 .

[2]  Richard D. Braatz,et al.  Screening plant designs and control structures for uncertain systems , 1996 .

[3]  R. Braatz,et al.  Model reduction for the robustness margin computation of large scale uncertain systems , 1998 .

[4]  Richard D. Braatz,et al.  SVD controllers for H2-, H∞- and μ-optimal control , 1997, Autom..

[5]  K. Goh,et al.  Robust synthesis via bilinear matrix inequalities , 1996 .

[6]  H. H. Rosenbrock,et al.  Computer Aided Control System Design , 1974, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  P. Gahinet,et al.  The projective method for solving linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[8]  Kemin Zhou,et al.  Stabilization of uncertain linear systems: an LFT approach , 1996, IEEE Trans. Autom. Control..

[9]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[10]  Richard D. Braatz,et al.  Identification, Estimation, and Control of Sheet and Film Processes , 1996 .

[11]  K. Glover,et al.  Model reduction of LFT systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[12]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[13]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[14]  R. Braatz,et al.  MULTIDIMENSIONAL REALIZATION OF LARGE SCALE UNCERTAIN SYSTEMS FOR MULTIVARIABLE STABILITY MARGIN COMPUTATION , 1997 .

[15]  Carolyn L. Beck,et al.  Model reduction of multidimensional and uncertain systems , 1994, IEEE Trans. Autom. Control..

[16]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[17]  Richard D. Braatz,et al.  Screening tools for robust control structure selection , 1995, Autom..

[18]  Thomas Kailath,et al.  Linear Systems , 1980 .

[19]  M. Safonov Stability margins of diagonally perturbed multivariable feedback systems , 1982 .

[20]  Frank Allgöwer,et al.  μ-Suboptimal design of a robustly performing controller for a chemical reactor , 1994 .

[21]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[22]  M. Morari,et al.  Computational complexity of μ calculation , 1994, IEEE Trans. Autom. Control..

[23]  R. Braatz,et al.  Globally optimal robust process control , 1999 .

[24]  R. Braatz,et al.  Globally optimal robust control for systems with time-varying nonlinear perturbations , 1997 .

[25]  Richard D. Braatz,et al.  Control-oriented modeling of sheet and film processes , 1997 .

[26]  R. D'Andrea,et al.  Kalman decomposition of linear fractional transformation representations and minimality , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[27]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[28]  Richard D. Braatz,et al.  A bilinear matrix inequality approach to robust nonlinear process control , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[29]  Richard D. Braatz,et al.  Robustness margin computation for large scale systems , 1999 .

[30]  C. Beck,et al.  Minimality, controllability and observability for uncertain systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[31]  M. Morari,et al.  Control-relevant model reduction problems for SISO H2, H∞, and μ-controller synthesis , 1987 .

[32]  H. Ozbay,et al.  On the /spl Nscr//spl Pscr/-hardness of the purely complex /spl mu/ computation, analysis/synthesis, and some related problems in multidimensional systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.