Exponential Time Algorithms - Structures, Measures, and Bounds

This book studies exponential time algorithms for NP-hard problems. In this modern area, the aim is to design algorithms for combinatorially hard problems that execute provably faster than a brute-force enumeration of all candidate solutions. After an introduction and survey of the field, the text focuses first on the design and especially the analysis of branching algorithms. The analysis of these algorithms heavily relies on measures of the instances, which aim at capturing the structure of the instances, not merely their size. This makes them more appropriate to quantify the progress an algorithm makes in the process of solving a problem. Expanding the methodology to design exponential time algorithms, new techniques are then presented. Two of them combine treewidth based algorithms with branching or enumeration algorithms. Another one is the iterative compression technique, prominent in the design of parameterized algorithms, and adapted here to the design of exponential time algorithms. This book assumes basic knowledge of algorithms and should serve anyone interested in exactly solving hard problems.

[1]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[2]  J. Moon,et al.  On cliques in graphs , 1965 .

[3]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[4]  L. Beineke Characterizations of derived graphs , 1970 .

[5]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[6]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[7]  Nicos Christofides,et al.  An Algorithm for the Chromatic Number of a Graph , 1971, Comput. J..

[8]  J. Moon On maximal transitive subtournaments , 1971, Proceedings of the Edinburgh Mathematical Society.

[9]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[10]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[11]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[12]  Chung C. Wang,et al.  An Algorithm for the Chromatic Number of a Graph , 1974, JACM.

[13]  Ellis Horowitz,et al.  Computing Partitions with Applications to the Knapsack Problem , 1974, JACM.

[14]  Eugene L. Lawler,et al.  A Note on the Complexity of the Chromatic Number Problem , 1976, Inf. Process. Lett..

[15]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[16]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  Martin Charles Golumbic,et al.  Trivially perfect graphs , 1978, Discret. Math..

[19]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[20]  室 章治郎 Michael R.Garey/David S.Johnson 著, "COMPUTERS AND INTRACTABILITY A guide to the Theory of NP-Completeness", FREEMAN, A5判変形判, 338+xii, \5,217, 1979 , 1980 .

[21]  James B. Saxe,et al.  Dynamic-Programming Algorithms for Recognizing Small-Bandwidth Graphs in Polynomial Time , 1980, SIAM J. Algebraic Discret. Methods.

[22]  Adi Shamir,et al.  A T=O(2n/2), S=O(2n/4) Algorithm for Certain NP-Complete Problems , 1981, SIAM J. Comput..

[23]  Richard M. Karp,et al.  Dynamic programming meets the principle of inclusion and exclusion , 1982, Oper. Res. Lett..

[24]  Kellogg S. Booth,et al.  Dominating Sets in Chordal Graphs , 1982, SIAM J. Comput..

[25]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[26]  Boris A. Trakhtenbrot,et al.  A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms , 1984, Annals of the History of Computing.

[27]  Alan A. Bertossi,et al.  Dominating Sets for Split and Bipartite Graphs , 1984, Inf. Process. Lett..

[28]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[29]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[30]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[31]  Tang Jian,et al.  An O(20.304n) Algorithm for Solving Maximum Independent Set Problem , 1986, IEEE Trans. Computers.

[32]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[33]  Saharon Shelah,et al.  Expected Computation Time for Hamiltonian Path Problem , 1987, SIAM J. Comput..

[34]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[35]  Etsuji Tomita,et al.  A Simple Algorithm for Finding a Maximum Clique and Its Worst-Case Time Complexity , 1990, Systems and Computers in Japan.

[36]  Michael R. Fellows,et al.  Fixed-parameter intractability , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[37]  Thomas H. Spencer,et al.  A Low-Exponential Algorithm for Counting Vertex Covers , 1992 .

[38]  Ton Kloks,et al.  Treewidth of Circle Graphs , 1993, ISAAC.

[39]  Zsolt Tuza,et al.  The Number of Maximal Independent Sets in Triangle-Free Graphs , 1993, SIAM J. Discret. Math..

[40]  J. Mark Keil The Complexity of Domination Problems in Circle Graphs , 1993, Discret. Appl. Math..

[41]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[42]  Ephraim Korach,et al.  Tree-Width, Path-Widt, and Cutwidth , 1993, Discret. Appl. Math..

[43]  A. George,et al.  Graph theory and sparse matrix computation , 1993 .

[44]  Emili Besalú,et al.  Definition, Mathematical Examples and Quantum Chemical Applications of Nested Summation Symbols and Logical Kronecker Deltas , 1994, Comput. Chem..

[45]  M. Fellows,et al.  Beyond NP-completeness for problems of bounded width: hardness for the W hierarchy , 1994, Symposium on the Theory of Computing.

[46]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[47]  David Eppstein,et al.  3-Coloring in time O(1.3446n): A no-MIS Algorithm , 1995, Electron. Colloquium Comput. Complex..

[48]  Ingo Schiermeyer Problems remaining NP-complette for sparse or dense graphs , 1995, Discuss. Math. Graph Theory.

[49]  Wenhui Zhang,et al.  Number of Models and Satisfiability of Sets of Clauses , 1996, Theor. Comput. Sci..

[50]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[51]  Jean-Raymond Abrial,et al.  The B-book - assigning programs to meanings , 1996 .

[52]  Gerhard Reinelt,et al.  A Polyhedral Approach to the Feedback Vertex Set Problem , 1996, IPCO.

[53]  Dimitrios M. Thilikos,et al.  Treewidth for Graphs with Small Chordality , 1997, Discret. Appl. Math..

[54]  Reuven Bar-Yehuda,et al.  Approximation Algorithms for the Feedback Vertex Set Problem with Applications to Constraint Satisfaction and Bayesian Inference , 1998, SIAM J. Comput..

[55]  Uriel Feige,et al.  Zero Knowledge and the Chromatic Number , 1998, J. Comput. Syst. Sci..

[56]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[57]  Panos M. Pardalos,et al.  A Greedy Randomized Adaptive Search Procedure for the Feedback Vertex Set Problem , 1998, J. Comb. Optim..

[58]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[59]  David P. Williamson,et al.  A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs , 1998, Oper. Res. Lett..

[60]  Jérôme Amilhastre,et al.  Complexity of Minimum Biclique Cover and Minimum Biclique Decomposition for Bipartite Domino-free Graphs , 1998, Discret. Appl. Math..

[61]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[62]  Dorit S. Hochbaum,et al.  Approximating Clique and Biclique Problems , 1998, J. Algorithms.

[63]  Walter Unger,et al.  The complexity of the approximation of the bandwidth problem , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[64]  Richard Beigel,et al.  Finding maximum independent sets in sparse and general graphs , 1999, SODA '99.

[65]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.

[66]  Venkatesh Raman,et al.  Upper Bounds for MaxSat: Further Improved , 1999, ISAAC.

[67]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[68]  Xiaotie Deng,et al.  A Min-Max Theorem on Feedback Vertex Sets , 1999, Math. Oper. Res..

[69]  Edward A. Hirsch,et al.  A New Algorithm for MAX-2-SAT , 2000, STACS.

[70]  Lhouari Nourine,et al.  A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..

[71]  R. Docimo UNIVERSITÀ DI ROMA TOR VERGATA , 1999 .

[72]  Amit Kumar,et al.  Wavelength conversion in optical networks , 1999, SODA '99.

[73]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[74]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[75]  David S. Johnson,et al.  What are the least tractable instances of max independent set? , 1999, SODA '99.

[76]  Oliver Kullmann,et al.  New Methods for 3-SAT Decision and Worst-case Analysis , 1999, Theor. Comput. Sci..

[77]  Uriel Feige,et al.  Coping with the NP-Hardness of the Graph Bandwidth Problem , 2000, SWAT.

[78]  Erich Prisner,et al.  Bicliques in Graphs I: Bounds on Their Number , 2000, Comb..

[79]  Rolf Niedermeier,et al.  New Upper Bounds for Maximum Satisfiability , 2000, J. Algorithms.

[80]  Russell Impagliazzo,et al.  A lower bound for DLL algorithms for k-SAT (preliminary version) , 2000, SODA '00.

[81]  Joseph Naor,et al.  Approximating Minimum Subset Feedback Sets in Undirected Graphs with Applications , 2000, SIAM J. Discret. Math..

[82]  Francesco Maffioli,et al.  Solving the feedback vertex set problem on undirected graphs , 2000, Discret. Appl. Math..

[83]  Burkhard Monien,et al.  Upper bounds on the bisection width of 3- and 4-regular graphs , 2001, J. Discrete Algorithms.

[84]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[85]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[86]  Milind Dawande,et al.  On Bipartite and Multipartite Clique Problems , 2001, J. Algorithms.

[87]  Evgeny Dantsin,et al.  Algorithms for Sat and Upper Bounds on Their Complexity , 2003, Electron. Colloquium Comput. Complex..

[88]  Andrew B. Kahng,et al.  New graph bipartizations for double-exposure, bright field alternating phase-shift mask layout , 2001, ASP-DAC '01.

[89]  Uwe Schöning,et al.  New Algorithms for k -SAT Based on the Local Search Principle , 2001, MFCS.

[90]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..

[91]  Xiaotie Deng,et al.  A Min-Max Theorem on Feedback Vertex Sets , 2002, Math. Oper. Res..

[92]  Lhouari Nourine,et al.  A fast incremental algorithm for building lattices , 2002, J. Exp. Theor. Artif. Intell..

[93]  Jochen Alber,et al.  Exact algorithms for NP hard problems on networks: design, analysis and implementation , 2002 .

[94]  Saket Saurabh,et al.  Faster Fixed Parameter Tractable Algorithms for Undirected Feedback Vertex Set , 2002, ISAAC.

[95]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.

[96]  David Peleg,et al.  Faster exact solutions for some NP-hard problems , 2002, Theor. Comput. Sci..

[97]  Benno Schwikowski,et al.  On enumerating all minimal solutions of feedback problems , 2002, Discret. Appl. Math..

[98]  Jon M. Kleinberg,et al.  A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search , 2002, Theor. Comput. Sci..

[99]  Peter Jonsson,et al.  An algorithm for counting maximum weighted independent sets and its applications , 2002, SODA '02.

[100]  Alex D. Scott,et al.  Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected Time for Sparse Instances , 2003, RANDOM-APPROX.

[101]  Russell Merris,et al.  Split graphs , 2003, Eur. J. Comb..

[102]  Rolf Niedermeier,et al.  Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT , 2003, Discret. Appl. Math..

[103]  Ola Angelsmark,et al.  Improved Algorithms for Counting Solutions in Constraint Satisfaction Problems , 2003, CP.

[104]  David Eppstein Small Maximal Independent Sets and Faster Exact Graph Coloring , 2001, WADS.

[105]  René Peeters,et al.  The maximum edge biclique problem is NP-complete , 2003, Discret. Appl. Math..

[106]  S. Salzberg,et al.  Hierarchical scaffolding with Bambus. , 2003, Genome research.

[107]  Peter L. Hammer,et al.  Consensus algorithms for the generation of all maximal bicliques , 2004, Discret. Appl. Math..

[108]  Gerhard J. Woeginger,et al.  Space and Time Complexity of Exact Algorithms : Some Open Problems , 2004 .

[109]  Gerhard J. Woeginger,et al.  Space and Time Complexity of Exact Algorithms: Some Open Problems (Invited Talk) , 2004, IWPEC.

[110]  Magnus Wahlström,et al.  Exact algorithms for finding minimum transversals in rank-3 hypergraphs , 2004, J. Algorithms.

[111]  Fabrizio Grandoni,et al.  Exact Algorithms for Hard Graph Problems , 2004 .

[112]  Jesper Makholm Byskov Enumerating maximal independent sets with applications to graph colouring , 2004, Oper. Res. Lett..

[113]  W. Kern,et al.  An improved deterministic local search algorithm for 3-SAT , 2004, Theor. Comput. Sci..

[114]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[115]  Gerhard J. Woeginger,et al.  Exact (Exponential) Algorithms for the Dominating Set Problem , 2004, WG.

[116]  Kazuhisa Makino,et al.  New Algorithms for Enumerating All Maximal Cliques , 2004, SWAT.

[117]  Ge Xia,et al.  Labeled Search Trees and Amortized Analysis: Improved Upper Bounds for NP-Hard Problems , 2003, Algorithmica.

[118]  Alexander S. Kulikov,et al.  Automated Proofs of Upper Bounds on the Running Time of Splitting Algorithms , 2004, IWPEC.

[119]  Kazuo Iwama,et al.  Worst-Case Upper Bounds for kSAT (Column: Algorithmics) , 2004, Bull. EATCS.

[120]  Celina M. H. de Figueiredo,et al.  On the generation of bicliques of a graph , 2007, Discret. Appl. Math..

[121]  Ola Angelsmark Constructing Algorithms for Constraint Satisfaction and Related Problems : Methods and Applications , 2005 .

[122]  Yoshio Okamoto,et al.  Linear-Time Counting Algorithms for Independent Sets in Chordal Graphs , 2005, WG.

[123]  Saket Saurabh,et al.  Improved Exact Exponential Algorithms for Vertex Bipartization and Other Problems , 2005, ICTCS.

[124]  Fedor V. Fomin,et al.  Finding minimum feedback vertex set in bipartite graph , 2005 .

[125]  Rolf Niedermeier,et al.  Parameterized Complexity of Generalized Vertex Cover Problems , 2005, WADS.

[126]  Bolette Ammitzbøll Jurik,et al.  On the number of maximal bipartite subgraphs of a graph , 2005, J. Graph Theory.

[127]  Ola Angelsmark,et al.  Partitioning Based Algorithms for Some Colouring Problems , 2005, CSCLP.

[128]  Magnus Wahlström,et al.  Counting models for 2SAT and 3SAT formulae , 2005, Theor. Comput. Sci..

[129]  Fabrizio Grandoni,et al.  Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms , 2005, Bull. EATCS.

[130]  Uriel Feige,et al.  Approximating the Bandwidth of Caterpillars , 2005, APPROX-RANDOM.

[131]  Martin Fürer,et al.  Algorithms for Counting 2-SAT Solutions and Colorings with Applications , 2005, Electron. Colloquium Comput. Complex..

[132]  Uwe Schöning,et al.  Algorithmics in Exponential Time , 2005, STACS.

[133]  Jesper Makholm Byskov,et al.  On the number of maximal bipartite subgraphs of a graph , 2005 .

[134]  Stefan Richter,et al.  Algorithms Based on the Treewidth of Sparse Graphs , 2005, WG.

[135]  Fabrizio Grandoni,et al.  Measure and Conquer: Domination - A Case Study , 2005, ICALP.

[136]  Gerhard J. Woeginger,et al.  Faster algorithms for computing power indices in weighted voting games , 2005, Math. Soc. Sci..

[137]  Ryan Williams,et al.  A new algorithm for optimal 2-constraint satisfaction and its implications , 2005, Theor. Comput. Sci..

[138]  Fabrizio Grandoni,et al.  Bounding the Number of Minimal Dominating Sets: A Measure and Conquer Approach , 2005, ISAAC.

[139]  Alexander S. Kulikov Automated Generation of Simplification Rules for SAT and MAXSAT , 2005, SAT.

[140]  Celina M. H. de Figueiredo,et al.  Generating bicliques of a graph in lexicographic order , 2005, Theor. Comput. Sci..

[141]  David Eppstein,et al.  3-Coloring in Time O(1.3289^n) , 2000, J. Algorithms.

[142]  P. Rossmanith,et al.  A New Satisabilit y Algorithm With Applications To Max-Cut , 2005 .

[143]  Evgeny Dantsin,et al.  Clause Shortening Combined with Pruning Yields a New Upper Bound for Deterministic SAT Algorithms , 2006, CIAC.

[144]  Ryan Williams,et al.  Confronting hardness using a hybrid approach , 2006, SODA '06.

[145]  Ge Xia,et al.  Improved Parameterized Upper Bounds for Vertex Cover , 2006, MFCS.

[146]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[147]  Fedor V. Fomin,et al.  Reports in Informatics , 2005 .

[148]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[149]  Igor Razgon Exact Computation of Maximum Induced Forest , 2006, SWAT.

[150]  Fedor V. Fomin,et al.  Finding a Minimum Feedback Vertex Set in Time O (1.7548n) , 2006, IWPEC.

[151]  Andreas Björklund,et al.  Exact Algorithms for Exact Satisfiability and Number of Perfect Matchings , 2006, ICALP.

[152]  Tobias Riege The domatic number problem: Boolean hierarchy completeness and exact exponential time algorithms , 2006 .

[153]  Mikko Koivisto,et al.  An O*(2^n ) Algorithm for Graph Coloring and Other Partitioning Problems via Inclusion--Exclusion , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[154]  Yun Zhang,et al.  The Cluster Editing Problem: Implementations and Experiments , 2006, IWPEC.

[155]  Mikko Koivisto,et al.  Optimal 2-constraint satisfaction via sum-product algorithms , 2006, Inf. Process. Lett..

[156]  Burkhard Monien,et al.  Upper bounds on the bisection width of 3- and 4-regular graphs , 2006, J. Discrete Algorithms.

[157]  Fedor V. Fomin,et al.  Branching and Treewidth Based Exact Algorithms , 2006, ISAAC.

[158]  Michael R. Fellows,et al.  The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel , 2006, IWPEC.

[159]  David Eppstein,et al.  Quasiconvex analysis of multivariate recurrence equations for backtracking algorithms , 2006, TALG.

[160]  Frederic Dorn,et al.  Dynamic Programming and Fast Matrix Multiplication , 2006, ESA.

[161]  Fabrizio Grandoni,et al.  A note on the complexity of minimum dominating set , 2006, J. Discrete Algorithms.

[162]  Subhash Khot,et al.  Better Inapproximability Results for MaxClique, Chromatic Number and Min-3Lin-Deletion , 2006, ICALP.

[163]  Alexander S. Kulikov,et al.  A new approach to proving upper bounds for MAX-2-SAT , 2006, SODA '06.

[164]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[165]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[166]  Henning Fernau,et al.  Parameterized algorithms for d-Hitting Set: The weighted case , 2006, Theor. Comput. Sci..

[167]  Saket Saurabh,et al.  Fast Exponential Algorithms for Maximum r-Regular Induced Subgraph Problems , 2006, FSTTCS.

[168]  Michael R. Fellows,et al.  Efficient Parameterized Preprocessing for Cluster Editing , 2007, FCT.

[169]  Jiong Guo,et al.  A More Effective Linear Kernelization for Cluster Editing , 2007, ESCAPE.

[170]  Mathieu Liedloff,et al.  Algorithmes exacts et exponentiels pour les problèmes NP-difficiles : domination, variantes et généralisations. (Excat exponential time algorithms for NP-hard problems : domination, variants and generalizations) , 2007 .

[171]  Hans L. Bodlaender,et al.  A Cubic Kernel for Feedback Vertex Set , 2007, STACS.

[172]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..

[173]  Magnus Wahlström,et al.  Algorithms, measures and upper bounds for satisfiability and related problems , 2007 .

[174]  Jianer Chen,et al.  Directed Feedback Vertex Set Problem is FPT , 2007, Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs.

[175]  Manuel Blum,et al.  Algorithms and resource requirements for fundamental problems , 2007 .

[176]  Konstantin Kutzkov,et al.  New Bounds for MAX-SAT by Clause Learning , 2007, CSR.

[177]  David Zuckerman Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number , 2007, Theory Comput..

[178]  Saket Saurabh,et al.  Efficient Exact Algorithms through Enumerating Maximal Independent Sets and Other Techniques , 2007, Theory of Computing Systems.

[179]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, Theory of Computing Systems.

[180]  Barry O'Sullivan,et al.  Directed Feedback Vertex Set is Fixed-Parameter Tractable , 2007, Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs.

[181]  Fedor V. Fomin,et al.  On Two Techniques of Combining Branching and Treewidth , 2009, Algorithmica.

[182]  Sven Rahmann,et al.  Exact and heuristic algorithms for weighted cluster editing. , 2007, Computational systems bioinformatics. Computational Systems Bioinformatics Conference.

[183]  Fedor V. Fomin,et al.  On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms , 2008, Algorithmica.

[184]  Erik D. Demaine,et al.  07281 Open Problems -- Structure Theory and FPT Algorithmcs for Graphs, Digraphs and Hypergraphs , 2007, Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs.

[185]  Frederic Dorn,et al.  Designing Subexponential Algorithms: Problems, Techniques & Structures , 2007 .

[186]  Alex D. Scott,et al.  Linear-programming design and analysis of fast algorithms for Max 2-CSP , 2006, Discret. Optim..

[187]  Andreas Björklund Algorithmic Bounds for Presumably Hard Combinatorial Problems , 2007 .

[188]  Petr A. Golovach,et al.  Branch and Recharge: Exact Algorithms for Generalized Domination , 2007, WADS.

[189]  Fedor V. Fomin,et al.  Improved Exact Algorithms for Counting 3- and 4-Colorings , 2007, COCOON.

[190]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[191]  Marcin Pilipczuk,et al.  Faster Exact Bandwidth , 2008, WG.

[192]  Fedor V. Fomin,et al.  Iterative Compression and Exact Algorithms , 2008, MFCS.

[193]  Andreas Björklund,et al.  Computing the Tutte Polynomial in Vertex-Exponential Time , 2007, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[194]  Graham Kendall,et al.  A Survey of NP-Complete Puzzles , 2008, J. Int. Comput. Games Assoc..

[195]  Fabrizio Grandoni,et al.  Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications , 2008, TALG.

[196]  Hans L. Bodlaender,et al.  Design by Measure and Conquer, A Faster Exact Algorithm for Dominating Set , 2008, STACS.

[197]  Dominik Scheder,et al.  Guided Search and a Faster Deterministic Algorithm for 3-SAT , 2008, LATIN.

[198]  Christian Komusiewicz,et al.  Fixed-Parameter Algorithms for Cluster Vertex Deletion , 2010, Theory of Computing Systems.

[199]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2008, J. Comput. Syst. Sci..

[200]  Magnus Wahlström,et al.  A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances , 2008, IWPEC.

[201]  Patrick Traxler The Time Complexity of Constraint Satisfaction , 2008, IWPEC.

[202]  Yoshio Okamoto,et al.  Counting the number of independent sets in chordal graphs , 2008, J. Discrete Algorithms.

[203]  Barry O'Sullivan,et al.  A fixed-parameter algorithm for the directed feedback vertex set problem , 2008, JACM.

[204]  Christian Komusiewicz,et al.  Fixed-Parameter Algorithms for Cluster Vertex Deletion , 2008, LATIN.

[205]  Mathieu Liedloff Finding a dominating set on bipartite graphs , 2008, Inf. Process. Lett..

[206]  Gerhard J. Woeginger,et al.  Open problems around exact algorithms , 2008, Discret. Appl. Math..

[207]  Andreas Björklund,et al.  The Travelling Salesman Problem in Bounded Degree Graphs , 2008, ICALP.

[208]  Thomas C. van Dijk,et al.  Inclusion/Exclusion Meets Measure and Conquer Exact Algorithms for Counting Dominating Sets , 2009 .

[209]  Dieter Kratsch,et al.  Exponential time algorithms for the minimum dominating set problem on some graph classes , 2006, TALG.

[210]  Henning Fernau,et al.  Exact Exponential-Time Algorithms for Finding Bicliques in a Graph , 2009 .

[211]  Stefan Richter,et al.  A Bound on the Pathwidth of Sparse Graphs with Applications to Exact Algorithms , 2008, SIAM J. Discret. Math..

[212]  Saket Saurabh,et al.  Even Faster Algorithm for Set Splitting! , 2009, IWPEC.

[213]  Wei Zhang,et al.  Lund University , 2009 .

[214]  Jesper Nederlof Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving on Steiner Tree and Related Problems , 2009, ICALP.

[215]  Stéphan Thomassé A quadratic kernel for feedback vertex set , 2009, SODA.

[216]  Joachim Kneis,et al.  A Fine-grained Analysis of a Simple Independent Set Algorithm , 2009, FSTTCS.

[217]  Andreas Björklund,et al.  Trimmed Moebius Inversion and Graphs of Bounded Degree , 2008, Theory of Computing Systems.

[218]  Fabrizio Grandoni,et al.  A measure & conquer approach for the analysis of exact algorithms , 2009, JACM.

[219]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[220]  Peter Rossmanith,et al.  Dynamic Programming on Tree Decompositions Using Generalised Fast Subset Convolution , 2009, ESA.

[221]  Alex D. Scott,et al.  Polynomial constraint satisfaction problems, graph bisection, and the Ising partition function , 2006, TALG.

[222]  Marcin Pilipczuk,et al.  Exact and approximate bandwidth , 2009, Theor. Comput. Sci..

[223]  Erik D. Demaine,et al.  Open problem session , 2010, CCCG.

[224]  Serge Gaspers Exponential Time Algorithms , 2010 .

[225]  Dieter Kratsch,et al.  On Independent Sets and Bicliques in Graphs , 2008, Algorithmica.

[226]  Fedor V. Fomin,et al.  Finding Induced Subgraphs via Minimal Triangulations , 2009, STACS.

[227]  Petr A. Golovach,et al.  Branch and Recharge: Exact Algorithms for Generalized Domination , 2011, Algorithmica.

[228]  Hans L. Bodlaender,et al.  Exact Algorithms for Edge Domination , 2011, Algorithmica.

[229]  Henning Fernau,et al.  Exact and Parameterized Algorithms for Max Internal Spanning Tree , 2008, Algorithmica.

[230]  Fedor V. Fomin,et al.  Treewidth computation and extremal combinatorics , 2008, Comb..

[231]  Mathieu Liedloff,et al.  A Branch-and-Reduce Algorithm for Finding a Minimum Independent Dominating Set , 2012, Discret. Math. Theor. Comput. Sci..

[232]  Serge Gaspers,et al.  A universally fastest algorithm for Max 2-Sat, Max 2-CSP, and everything in between , 2009, J. Comput. Syst. Sci..