Shell PCA: Statistical Shape Modelling in Shell Space

In this paper we describe how to perform Principal Components Analysis in "shell space". Thin shells are a physical model for surfaces with non-zero thickness whose deformation dissipates elastic energy. Thin shells, or their discrete counterparts, can be considered to reside in a shell space in which the notion of distance is given by the elastic energy required to deform one shape into another. It is in this setting that we show how to perform statistical analysis of a set of shapes (meshes in dense correspondence), providing a hybrid between physical and statistical shape modelling. The resulting models are better able to capture non-linear deformations, for example resulting from articulated motion, even when training data is very sparse compared to the dimensionality of the observation space.

[1]  Alan Brunton,et al.  Review of statistical shape spaces for 3D data with comparative analysis for human faces , 2012, Comput. Vis. Image Underst..

[2]  Michael J. Black,et al.  Lie Bodies: A Manifold Representation of 3D Human Shape , 2012, ECCV.

[3]  Hanspeter Pfister,et al.  Face transfer with multilinear models , 2005, SIGGRAPH 2005.

[4]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[6]  Timo Bolkart,et al.  Statistical Analysis of 3D Faces in Motion , 2013, 2013 International Conference on 3D Vision.

[7]  Sami Romdhani,et al.  Optimal Step Nonrigid ICP Algorithms for Surface Registration , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Luc Van Gool,et al.  A 3-D Audio-Visual Corpus of Affective Communication , 2010, IEEE Transactions on Multimedia.

[9]  William A. P. Smith,et al.  3D morphable face models revisited , 2009, CVPR.

[10]  Thomas Vetter,et al.  Face Recognition Based on Fitting a 3D Morphable Model , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[12]  Søren Hauberg,et al.  A Geometric take on Metric Learning , 2012, NIPS.

[13]  Michael J. Black,et al.  FAUST: Dataset and Evaluation for 3D Mesh Registration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Timothy F. Cootes,et al.  3D Statistical Shape Models Using Direct Optimisation of Description Length , 2002, ECCV.

[15]  A. Raoult,et al.  The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity , 1995 .

[16]  Maria Giovanna Mora,et al.  Mathematik in den Naturwissenschaften Leipzig Derivation of nonlinear bending theory for shells from three dimensional nonlinear elasticity by Gamma-convergence by , 2003 .

[17]  Wojciech Matusik,et al.  Video face replacement , 2011, ACM Trans. Graph..

[18]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[19]  Mathieu Desbrun,et al.  Eurographics/siggraph Symposium on Computer Animation (2003) Discrete Shells , 2022 .

[20]  Mario Botsch,et al.  Example‐Driven Deformations Based on Discrete Shells , 2011, Comput. Graph. Forum.

[21]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[22]  Fei Yang,et al.  Expression flow for 3D-aware face component transfer , 2011, SIGGRAPH 2011.

[23]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[24]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[25]  Flavio Prieto,et al.  Fully automatic expression-invariant face correspondence , 2013, Machine Vision and Applications.

[26]  Thomas Vetter,et al.  A morphable model for the synthesis of 3D faces , 1999, SIGGRAPH.

[27]  Eitan Grinspun,et al.  Cubic shells , 2007, SCA '07.

[28]  Eamonn J. Keogh,et al.  Manifold Clustering of Shapes , 2006, Sixth International Conference on Data Mining (ICDM'06).

[29]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[30]  Martin Rumpf,et al.  An Elasticity-Based Covariance Analysis of Shapes , 2011, International Journal of Computer Vision.

[31]  Anuj Srivastava,et al.  Shape Analysis of Elastic Curves in Euclidean Spaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Radu Horaud,et al.  Articulated Shape Matching Using Locally Linear Embedding and Orthogonal Alignment , 2007 .

[33]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[34]  Martin Rumpf,et al.  Exploring the Geometry of the Space of Shells , 2014, Comput. Graph. Forum.

[35]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.