Cytoarchitectonic mapping of attentional selection and reorienting in parietal cortex

Selection and reorienting are two fundamental aspects of spatial attention. By means of event-related fMRI in a total of 26 subjects, we localized these two processes within a same experiment applying a probabilistic cytoarchitectonic reference frame. In a classical spatial cueing paradigm, the target was presented at the cued location either alone (60% of trials) or in combination with a contralateral distracter ('competition trials', 20% of trials), or at a location opposite to the cued location ('invalidly cued trials', 20% of trials). In a sensory control experiment we differentiated between the attentional and the sensory effects of the distracter. In areas hIP1 and hIP3, competition trials exerted a significantly stronger attentional effect than invalidity trials. Conversely, area PF in the right hemisphere showed an invalidity effect in the absence of competition effect. A third type of response was found in areas PFm and PGa which showed both an invalidity and a competition effect. The combined study of selection and reorienting using a cytoarchitectonic reference frame enabled us to resolve the wide between-study variance in temporoparietal coordinates associated with the invalidity effect. Furthermore, the study demonstrated within a same experiment a functional dissociation between reorienting and selection in parietal cortex.

[1]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[2]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple stimulus displays: II. responses are suppressed at the cued location. , 2001, Cerebral cortex.

[3]  J. Decety,et al.  The Role of the Right Temporoparietal Junction in Social Interaction: How Low-Level Computational Processes Contribute to Meta-Cognition , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[4]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[5]  Timothy Edward John Behrens,et al.  Connection patterns distinguish 3 regions of human parietal cortex. , 2006, Cerebral cortex.

[6]  François Lazeyras,et al.  Anatomical variability of the lateral frontal lobe surface: implication for intersubject variability in language neuroimaging , 2005, NeuroImage.

[7]  Céline R. Gillebert,et al.  Parcellation of parietal cortex: Convergence between lesion-symptom mapping and mapping of the intact functioning brain , 2009, Behavioural Brain Research.

[8]  Céline R. Gillebert,et al.  Spatial attention deficits in humans: The critical role of superior compared to inferior parietal lesions , 2012, Neuropsychologia.

[9]  Ronald R. Peeters,et al.  Attentional priorities and access to short-term memory: Parietal interactions , 2012, NeuroImage.

[10]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[11]  Nadim Joni Shah,et al.  Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques , 2011, NeuroImage.

[12]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple-stimulus displays: I. neurons encode the location of the salient stimulus. , 2001, Cerebral cortex.

[13]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[14]  Yq Liu,et al.  Intention and Attention: Different functional roles for LIPd and LIPv , 2010, Nature Neuroscience.

[15]  M. Corbetta,et al.  Spatial neglect and attention networks. , 2011, Annual review of neuroscience.

[16]  Damien A. Fair,et al.  Defining functional areas in individual human brains using resting functional connectivity MRI , 2008, NeuroImage.

[17]  G A Orban,et al.  Attentional responses to unattended stimuli in human parietal cortex. , 2005, Brain : a journal of neurology.

[18]  B Giesbrecht,et al.  Neural mechanisms of top-down control during spatial and feature attention , 2003, NeuroImage.

[19]  Guy A. Orban,et al.  Mapping the parietal cortex of human and non-human primates , 2006, Neuropsychologia.

[20]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[21]  A. Schleicher,et al.  Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus , 2006, The Journal of comparative neurology.

[22]  Asaid Khateb,et al.  Group analysis and the subject factor in functional magnetic resonance imaging: Analysis of fifty right‐handed healthy subjects in a semantic language task , 2008, Human brain mapping.

[23]  Justin L. Vincent,et al.  Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  O Bertrand,et al.  Silence is golden: transient neural deactivation in the prefrontal cortex during attentive reading. , 2008, Cerebral cortex.

[25]  G. Luppino,et al.  Cortical connections of the inferior parietal cortical convexity of the macaque monkey. , 2006, Cerebral cortex.

[26]  A. Dale,et al.  Functional Parcellation of Attentional Control Regions of the Brain , 2004, Journal of Cognitive Neuroscience.

[27]  G. Orban,et al.  Default Mode of Brain Function in Monkeys , 2011, The Journal of Neuroscience.

[28]  G L Romani,et al.  Functional Connectivity MR Imaging of the Language Network in Patients with Drug-Resistant Epilepsy , 2011, American Journal of Neuroradiology.

[29]  M. Rushworth,et al.  Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks. , 2012, Cerebral cortex.

[30]  Dante Mantini,et al.  Emerging Roles of the Brain’s Default Network , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[31]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[32]  Jonathan D. Power,et al.  A Parcellation Scheme for Human Left Lateral Parietal Cortex , 2010, Neuron.

[33]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[34]  Simon B. Eickhoff,et al.  Assignment of functional activations to probabilistic cytoarchitectonic areas revisited , 2007, NeuroImage.

[35]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[36]  Angela R. Laird,et al.  ALE meta-analysis of action observation and imitation in the human brain , 2010, NeuroImage.

[37]  A. Nobre,et al.  The Large-Scale Neural Network for Spatial Attention Displays Multifunctional Overlap But Differential Asymmetry , 1999, NeuroImage.

[38]  Dave J. Hayes,et al.  Interpreting Deactivations in Neuroimaging , 2012, Front. Psychology.

[39]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[40]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[41]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[42]  M. Arbib,et al.  Language within our grasp , 1998, Trends in Neurosciences.

[43]  E. Macaluso,et al.  Stimulus-Driven Orienting of Visuo-Spatial Attention in Complex Dynamic Environments , 2011, Neuron.

[44]  J. Duncan The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour , 2010, Trends in Cognitive Sciences.

[45]  Kaustubh Supekar,et al.  Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. , 2010, Cerebral cortex.

[46]  K. Amunts,et al.  The human inferior parietal lobule in stereotaxic space , 2008, Brain Structure and Function.

[47]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[48]  Guy A. Orban,et al.  Comment on Devlin and Poldrack , 2007, NeuroImage.

[49]  Michael A. Silver,et al.  Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex , 2010, NeuroImage.

[50]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[51]  Jeffrey R. Binder,et al.  Task-induced deactivation and the "resting" state , 2012, NeuroImage.

[52]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[53]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[54]  Christina B. Young,et al.  Functional dissociations between four basic arithmetic operations in the human posterior parietal cortex: A cytoarchitectonic mapping study , 2011, Neuropsychologia.

[55]  Gereon R. Fink,et al.  Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex , 2006, NeuroImage.

[56]  Vince D. Calhoun,et al.  Measuring brain connectivity: Diffusion tensor imaging validates resting state temporal correlations , 2008, NeuroImage.

[57]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[58]  A. Schleicher,et al.  Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. , 2008, Cerebral cortex.

[59]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[60]  Roel M. Willems,et al.  Altered intrinsic functional connectivity of anterior and posterior insula regions in high‐functioning participants with autism spectrum disorder , 2011, Human brain mapping.

[61]  C. Bundesen A theory of visual attention. , 1990, Psychological review.

[62]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[63]  M. Posner The Cognitive Neuroscience of Attention , 2020 .

[64]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  M. Corbetta,et al.  An Event-Related Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of Attention , 2005, The Journal of Neuroscience.

[66]  V Menon,et al.  Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps. , 2009, Cerebral cortex.

[67]  Stephen M. Rao,et al.  Neural Mechanisms of Visual Attention: Object-Based Selection of a Region in Space , 2000, Journal of Cognitive Neuroscience.

[68]  M. Mesulam,et al.  Remapping attentional priorities: differential contribution of superior parietal lobule and intraparietal sulcus. , 2007, Cerebral cortex.

[69]  J. Binder,et al.  A Parametric Manipulation of Factors Affecting Task-induced Deactivation in Functional Neuroimaging , 2003, Journal of Cognitive Neuroscience.

[70]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[71]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[72]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[73]  D. Gitelman,et al.  Functional Specificity of Superior Parietal Mediation of Spatial Shifting , 2001, NeuroImage.

[74]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[75]  Patrick Dupont,et al.  Spatial stimulus configuration and attentional selection: extrastriate and superior parietal interactions. , 2013, Cerebral cortex.

[76]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[77]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of attention , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[80]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.

[81]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[82]  S. Aglioti,et al.  Gesture Discrimination in Primary Progressive Aphasia: The Intersection between Gesture and Language Processing Pathways , 2010, The Journal of Neuroscience.

[83]  Jon Driver,et al.  Integration of Goal- and Stimulus-Related Visual Signals Revealed by Damage to Human Parietal Cortex , 2010, The Journal of Neuroscience.

[84]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[85]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[86]  Patrick Dupont,et al.  Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. , 2011, Brain : a journal of neurology.

[87]  T. A. Kelley,et al.  Cortical mechanisms for shifting and holding visuospatial attention. , 2008, Cerebral cortex.

[88]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Thomas E. Nichols,et al.  Optimization of experimental design in fMRI: a general framework using a genetic algorithm , 2003, NeuroImage.

[90]  J. Downar,et al.  A multimodal cortical network for the detection of changes in the sensory environment , 2000, Nature Neuroscience.

[91]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[92]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[93]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[94]  Jens Schwarzbach,et al.  Attentional inhibition of visual processing in human striate and extrastriate cortex , 2003, NeuroImage.

[95]  S. Grossberg The Attentive Brain , 1995 .

[96]  Richard S. J. Frackowiak,et al.  Functional localization of the system for visuospatial attention using positron emission tomography. , 1997, Brain : a journal of neurology.

[97]  R. Parasuraman The attentive brain , 1998 .

[98]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[99]  M. Corbetta,et al.  Inter-species activity correlations reveal functional correspondences between monkey and human brain areas , 2012, Nature Methods.

[100]  M. Corbetta,et al.  Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. , 2007, Cerebral cortex.

[101]  Ronald Peeters,et al.  Convergence between Lesion-Symptom Mapping and Functional Magnetic Resonance Imaging of Spatially Selective Attention in the Intact Brain , 2008, The Journal of Neuroscience.

[102]  D. V. Essen,et al.  Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex , 2007, Neuron.

[103]  Elena Borra,et al.  Architectonic organization of the inferior parietal convexity of the macaque monkey , 2006, The Journal of comparative neurology.

[104]  K. Amunts,et al.  Advances in cytoarchitectonic mapping of the human cerebral cortex. , 2001, Neuroimaging clinics of North America.

[105]  K. Amunts,et al.  Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. , 2008, Cerebral cortex.

[106]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[107]  M. Corbetta,et al.  Neural basis and recovery of spatial attention deficits in spatial neglect , 2005, Nature Neuroscience.