Emerging Challenges in Computational Topology

Here we present the results of the NSF-funded Workshop on Computational Topology, which met on June 11 and 12 in Miami Beach, Florida. This report identifies important problems involving both computation and topology.

[1]  Saugata Basu,et al.  The Combinatorial and Topological Complexity of a Single Cell , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[2]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[3]  David Eppstein,et al.  Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[4]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[5]  Pascal Lienhardt,et al.  Topological models for boundary representation: a comparison with n-dimensional generalized maps , 1991, Comput. Aided Des..

[6]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[7]  Herbert Edelsbrunner,et al.  On the Definition and the Construction of Pockets in Macromolecules , 1998, Discret. Appl. Math..

[8]  Mark T. Jones,et al.  Computation of Equilibrium Vortex Structures for Type-II Superconductors , 1993, Int. J. High Perform. Comput. Appl..

[9]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[10]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[11]  Peter W. Jones Rectifiable sets and the Traveling Salesman Problem , 1990 .

[12]  Lydia E. Kavraki,et al.  Randomized query processing in robot path planning , 1995, STOC '95.

[13]  N. Zabusky,et al.  Ellipsoidal quantification of evolving phenomena , 1991 .

[14]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .

[15]  J. Gray Information Technology Research: Investing in Our Future , 1999 .

[16]  Jeffrey R. Weeks,et al.  Measuring the shape of the Universe , 1998 .

[17]  K DeyTamal,et al.  Computing homology groups of simplicial complexes in R3 , 1998 .

[18]  Jihad El-Sana,et al.  Topology Simplification for Polygonal Virtual Environments , 1998, IEEE Trans. Vis. Comput. Graph..

[19]  C. K. Johnson Crystallographic Topology 2: Overview and Work in Progress , 1999 .

[20]  John E. Hopcroft,et al.  Reducing Multiple Object Motion Planning to Graph Searching , 1984, SIAM J. Comput..

[21]  Tamal K. Dey,et al.  Computing homology groups of simplicial complexes in R3 , 1998, JACM.

[22]  J.,et al.  Whisker weaving: Invalid connectivity resolution and primal construction algorithm , 1995 .

[23]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[24]  Eric Sedgwick,et al.  Decision problems in the space of Dehn fillings , 1998 .

[25]  David Eppstein,et al.  Quadrilateral Meshing by Circle Packing , 1999, Int. J. Comput. Geom. Appl..

[26]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[27]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[28]  Ker-I Ko Computational Complexity of Fixed Points and Intersection Points , 1995, J. Complex..

[29]  Karol Borsuk Drei Sätze über die n-dimensionale euklidische Sphäre , 1933 .

[30]  David Eppstein,et al.  Linear complexity hexahedral mesh generation , 1996, SCG '96.

[31]  Geoffrey Hemion The Classification of Knots and 3-Dimensional Spaces , 1992 .

[32]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[33]  Steven Fortune,et al.  Coordinated motion of two robot arms , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[34]  Ho-Lun Cheng,et al.  Shape space from deformation , 1998, Proceedings Pacific Graphics '98. Sixth Pacific Conference on Computer Graphics and Applications (Cat. No.98EX208).

[35]  Scott A. Mitchell,et al.  A Characterization of the Quadrilateral Meshes of a Surface Which Admit a Compatible Hexahedral Mesh of the Enclosed Volume , 1996, STACS.

[36]  George E. Collins,et al.  Cylindrical Algebraic Decomposition II: An Adjacency Algorithm for the Plane , 1984, SIAM J. Comput..

[37]  Leonidas J. Guibas,et al.  A Singly Exponential Stratification Scheme for Real Semi-Algebraic Varieties and its Applications , 1991, Theor. Comput. Sci..

[38]  Hellmuth Kneser,et al.  Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. , 1929 .

[39]  Herbert Edelsbrunner,et al.  Topology preserving edge contraction , 1998 .

[40]  Scott A. Mitchell,et al.  Whisker weaving: Invalid connectivity resolution and primal construction algorithm , 1995 .

[41]  S Fortier,et al.  Critical-point analysis in protein electron-density map interpretation. , 1997, Methods in enzymology.

[42]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere , 1995, Comput. Aided Geom. Des..

[43]  Andrew Chi-Chih Yao Decision tree complexity and Betti numbers , 1994, STOC '94.

[44]  Marie-Françoise Roy,et al.  Complexity of computing semi-algebraic descriptions of the connected components of a semi-algebraic set , 1998, ISSAC '98.

[45]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[46]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[47]  Boris Aronov,et al.  Motion Planning for Multiple Robots , 1998, SCG '98.

[48]  P. Knupp Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated qu , 2000 .

[49]  W. Haken Theorie der Normalflächen , 1961 .

[50]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[51]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[52]  Rüdiger Westermann,et al.  A multiresolution framework for volume rendering , 1994, VVS '94.

[53]  William Gropp,et al.  Numerical Simulation of Vortex Dynamics in Type-II Superconductors , 1996 .

[54]  Christopher R. Johnson,et al.  Hierarchical Data Structures for Interactive Volume Visualization , 1995 .

[55]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[56]  Rüdiger Westermann,et al.  A Multiscale Approach to Integrated Volume Segmentation and Rendering , 1997, Comput. Graph. Forum.

[57]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[58]  I. Fried Condition of finite element matrices generated from nonuniform meshes. , 1972 .

[59]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[60]  Jeffrey R. Weeks Reconstructing the global topology of the universe from the cosmic microwave background , 1998 .

[61]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.

[62]  Joel Hass,et al.  Algorithms for recognizing knots and 3-manifolds , 1998 .

[63]  Abigail Thompson,et al.  THIN POSITION AND THE RECOGNITION PROBLEM FOR S3 , 1994 .

[64]  Erik Brisson,et al.  Representing geometric structures ind dimensions: Topology and order , 1993, Discret. Comput. Geom..

[65]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[66]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[67]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[68]  John E. Hopcroft,et al.  Motion of Objects in Contact , 1984 .

[69]  Jean-Claude Latombe,et al.  A General Framework for Assembly Planning: The Motion Space Approach , 1998, SCG '98.