Fast-Match: Fast Affine Template Matching

Fast-Match is a fast algorithm for approximate template matching under 2D affine transformations that minimizes the Sum-of-Absolute-Differences (SAD) error measure. There is a huge number of transformations to consider but we prove that they can be sampled using a density that depends on the smoothness of the image. For each potential transformation, we approximate the SAD error using a sublinear algorithm that randomly examines only a small number of pixels. We further accelerate the algorithm using a branch-and-bound-like scheme. As images are known to be piecewise smooth, the result is a practical affine template matching algorithm with approximation guarantees, that takes a few seconds to run on a standard machine. We perform several experiments on three different datasets, and report very good results.

[1]  Daniel Keren,et al.  Applying Property Testing to an Image Partitioning Problem , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Steven M. Seitz,et al.  Filter flow , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[3]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[4]  Shu-Yuan Chen,et al.  Retrieval of translated, rotated and scaled color textures , 2003, Pattern Recognit..

[5]  Vittorio Ferrari,et al.  Exploiting spatial overlap to efficiently compute appearance distances between image windows , 2011, NIPS 2011.

[6]  J. V. van Hateren,et al.  Modelling the power spectra of natural images: statistics and information. , 1996, Vision research.

[7]  Federico Tombari,et al.  Performance Evaluation of Full Search Equivalent Pattern Matching Algorithms , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[9]  Sofya Raskhodnikova,et al.  Approximate Testing of Visual Properties , 2003, RANDOM-APPROX.

[10]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[11]  Hae Yong Kim,et al.  Grayscale Template-Matching Invariant to Rotation, Scale, Translation, Brightness and Contrast , 2007, PSIVT.

[12]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[13]  Du-Ming Tsai,et al.  Rotation-invariant pattern matching using wavelet decomposition , 2002, Pattern Recognit. Lett..

[14]  Kimmo Fredriksson Rotation Invariant Template Matching , 2001 .

[15]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[16]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[17]  David G. Lowe,et al.  Scalable Nearest Neighbor Algorithms for High Dimensional Data , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[19]  Petros Maragos,et al.  Motion displacement estimation using an affine model for image matching , 1991 .

[20]  Daniel Reichman,et al.  Tight Approximation of Image Matching , 2011, ArXiv.

[21]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[22]  Dana Ron,et al.  Testing Properties of Sparse Images , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[23]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[24]  Yuandong Tian,et al.  Globally Optimal Estimation of Nonrigid Image Distortion , 2012, International Journal of Computer Vision.

[25]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[26]  William Rucklidge Efficient guaranteed search for gray-level patterns , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Dana Ron,et al.  Testing Properties of Sparse Images , 2010, FOCS.

[28]  Quan Wang,et al.  Real-Time Image Matching Based on Multiple View Kernel Projection , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Michael Werman,et al.  Accelerating Pattern Matching or How Much Can You Slide? , 2007, ACCV.

[30]  J. H. van Hateren,et al.  Modelling the Power Spectra of Natural Images: Statistics and Information , 1996, Vision Research.

[31]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..