starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data

MicroRNAs (miRNAs) represent an important class of small non-coding RNAs (sRNAs) that regulate gene expression by targeting messenger RNAs. However, assigning miRNAs to their regulatory target genes remains technically challenging. Recently, high-throughput CLIP-Seq and degradome sequencing (Degradome-Seq) methods have been applied to identify the sites of Argonaute interaction and miRNA cleavage sites, respectively. In this study, we introduce a novel database, starBase (sRNA target Base), which we have developed to facilitate the comprehensive exploration of miRNA–target interaction maps from CLIP-Seq and Degradome-Seq data. The current version includes high-throughput sequencing data generated from 21 CLIP-Seq and 10 Degradome-Seq experiments from six organisms. By analyzing millions of mapped CLIP-Seq and Degradome-Seq reads, we identified ∼1 million Ago-binding clusters and ∼2 million cleaved target clusters in animals and plants, respectively. Analyses of these clusters, and of target sites predicted by 6 miRNA target prediction programs, resulted in our identification of approximately 400 000 and approximately 66 000 miRNA-target regulatory relationships from CLIP-Seq and Degradome-Seq data, respectively. Furthermore, two web servers were provided to discover novel miRNA target sites from CLIP-Seq and Degradome-Seq data. Our web implementation supports diverse query types and exploration of common targets, gene ontologies and pathways. The starBase is available at http://starbase.sysu.edu.cn/.

[1]  Yuanji Zhang,et al.  miRU: an automated plant miRNA target prediction server , 2005, Nucleic Acids Res..

[2]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[3]  Sanghyuk Lee,et al.  miRGator: an integrated system for functional annotation of microRNAs , 2007, Nucleic Acids Res..

[4]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[5]  Patricia P. Chan,et al.  GtRNAdb: a database of transfer RNA genes detected in genomic sequence , 2008, Nucleic Acids Res..

[6]  Adam M. Gustafson,et al.  microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants , 2005, Cell.

[7]  Martin Reczko,et al.  The database of experimentally supported targets: a functional update of TarBase , 2008, Nucleic Acids Res..

[8]  Peter F. Stadler,et al.  Fast Mapping of Short Sequences with Mismatches, Insertions and Deletions Using Index Structures , 2009, PLoS Comput. Biol..

[9]  Laurent Lestrade,et al.  snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs , 2005, Nucleic Acids Res..

[10]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[11]  Kyle Kai-How Farh,et al.  Expanding the microRNA targeting code: functional sites with centered pairing. , 2010, Molecular cell.

[12]  Gregory J. Hannon,et al.  Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. , 2010, Molecular cell.

[13]  Gene W. Yeo,et al.  An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells , 2009, Nature Structural &Molecular Biology.

[14]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[15]  Yvonne Tay,et al.  MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation , 2008, Nature.

[16]  Y. Qi,et al.  Rice MicroRNA Effector Complexes and Targets[C][W] , 2009, The Plant Cell Online.

[17]  Donny D. Licatalosi,et al.  RNA processing and its regulation: global insights into biological networks , 2010, Nature Reviews Genetics.

[18]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[19]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[20]  Webb Miller,et al.  CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets , 2009, Bioinform..

[21]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[22]  A. Hatzigeorgiou,et al.  A guide through present computational approaches for the identification of mammalian microRNA targets , 2006, Nature Methods.

[23]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[24]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[25]  Gautier Koscielny,et al.  Ensembl Genomes: Extending Ensembl across the taxonomic space , 2009, Nucleic Acids Res..

[26]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[27]  David Haussler,et al.  The UCSC Genome Browser database: update 2010 , 2009, Nucleic Acids Res..

[28]  John Quackenbush,et al.  Plant database resources at The Institute for Genomic Research. , 2007, Methods in molecular biology.

[29]  Gene W. Yeo,et al.  Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. , 2009, Molecular cell.

[30]  Dennis B. Troup,et al.  NCBI GEO: archive for high-throughput functional genomic data , 2008, Nucleic Acids Res..

[31]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[32]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[33]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[34]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[35]  Vincent Moulton,et al.  Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. , 2010, The Plant journal : for cell and molecular biology.

[36]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[37]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[38]  Pamela J Green,et al.  Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome , 2009, Nature Protocols.

[39]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[40]  Tyson A. Clark,et al.  HITS-CLIP yields genome-wide insights into brain alternative RNA processing , 2008, Nature.

[41]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[42]  D. Bartel,et al.  Endogenous siRNA and miRNA Targets Identified by Sequencing of the Arabidopsis Degradome , 2008, Current Biology.

[43]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[44]  Xiaofeng Cao,et al.  Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica) , 2010, Frontiers in Biology.

[45]  Ting Wang,et al.  The UCSC Genome Browser Database: update 2009 , 2008, Nucleic Acids Res..

[46]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[47]  Gene W. Yeo,et al.  Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans , 2010, Nature Structural &Molecular Biology.

[48]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[49]  J. Carrington,et al.  miRNA Target Prediction in Plants. , 2010, Methods in molecular biology.

[50]  John A. Hamilton,et al.  The TIGR Rice Genome Annotation Resource: improvements and new features , 2006, Nucleic Acids Res..

[51]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[52]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[53]  Hui Zhou,et al.  deepBase: a database for deeply annotating and mining deep sequencing data , 2009, Nucleic Acids Res..

[54]  S. Luo,et al.  Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends , 2008, Nature Biotechnology.

[55]  Paul D. Shaw,et al.  Plant snoRNA database , 2003, Nucleic Acids Res..

[56]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[57]  Yi-Hsuan Chen,et al.  miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes , 2007, Nucleic Acids Res..