Dribbling Control of Omnidirectional Soccer Robots

This paper focuses on the dribbling control problem of an omnidirectional mobile robot. Because the movement of the dribbled object must be considered, dribbling control is more challenging than normal mobile robot motion control. A new feedback control algorithm, which steers a reference point to follow the desired movement and keeps the ball near to this point simultaneously, is proposed. To dribble a rolling ball along a given path, the robot should provide the ball with appropriate force by consecutive pushing operations when they travel in an environment with obstacles. Based on the analysis of the forces acting on the ball with respect to the mobile robot coordinate system, a constraint for robot movement in the dribbling process is also introduced. The simulation and real-world experiments address the performance of this control algorithm.

[1]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[2]  Andreas Zell,et al.  PATH FOLLOWING CONTROL FOR A MOBILE ROBOT PUSHING A BALL , 2006 .

[3]  Raffaello D'Andrea,et al.  Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle , 2004, Robotics Auton. Syst..

[4]  Joao P. Hespanha,et al.  Logic-based switching control for trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty , 2004, Proceedings of the 2004 American Control Conference.

[5]  Francesco Maria Raimondi,et al.  A new fuzzy robust dynamic controller for autonomous vehicles with nonholonomic constraints , 2005, Robotics Auton. Syst..

[6]  Pascal Morin,et al.  Motion Control of Wheeled Mobile Robots , 2008, Springer Handbook of Robotics.

[7]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[8]  Lionel Lapierre,et al.  Simulatneous Path Following and Obstacle Avoidance Control of a Unicycle-type Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[9]  Oliver Purwin Cornell Big Red 2003 , 2003 .

[10]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..

[11]  Martin A. Riedmiller,et al.  Learning a Partial Behavior for a Competitive Robotic Soccer Agent , 2006, Künstliche Intell..

[12]  Raúl Rojas,et al.  Holonic Control of a robot with an omnidirectional drive , 2006, Künstliche Intell..

[13]  C. Samson,et al.  Trajectory tracking for unicycle-type and two-steering-wheels mobile robots , 1993 .

[14]  James C. Alexander,et al.  On the Kinematics of Wheeled Mobile Robots , 1989, Int. J. Robotics Res..

[15]  Andreas Zell,et al.  Tracking Control and Adaptive Local Navigation for Nonholonomic Mobile Robots , 2004 .

[16]  Martin A. Riedmiller,et al.  Neural Reinforcement Learning Controllers for a Real Robot Application , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[17]  Alexander Gloye,et al.  A Neural Coach for Teaching Robots Using Diagrams , 2005 .

[18]  Kazuhiko Terashima,et al.  Velocity control of an omni-directional wheelchair considering user's comfort by suppressing vibration , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  R. Bellman Dynamic programming. , 1957, Science.

[20]  Ioan Doroftei,et al.  Omnidirectional Mobile Robot - Design and Implementation , 2007 .

[21]  Bernhard Nebel,et al.  CS Freiburg: Doing the Right Thing in a Group , 2000, RoboCup.

[22]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[23]  Bernhard Nebel,et al.  CS Freiburg 2001 , 2001, RoboCup.

[24]  Kazuhiko Terashima,et al.  Frequency shape control of omni-directional wheelchair to increase user's comfort , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[25]  Xiang Li,et al.  Motion control of an omnidirectional mobile robot , 2007, ICINCO-RA.

[26]  F. Fontes A General Framework to Design Stabilizing Nonlinear Model Predictive Controllers , 2001 .

[27]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[28]  Mary-Anne Williams,et al.  Distributed Sensor Fusion for Object Tracking , 2005, RoboCup.

[29]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[30]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[31]  Roland Siegwart,et al.  A Control Method for Stable and Smooth Path Following of Mobile Robots , 2005 .

[32]  J. Asgari,et al.  Predictive control approach to autonomous vehicle steering , 2006, 2006 American Control Conference.

[33]  Keigo Watanabe,et al.  Control of an omnidirectional mobile robot , 1998, 1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111).

[34]  Andreas Zell,et al.  A Combined Monte-Carlo Localization and Tracking Algorithm for RoboCup , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  S. Joe Qin,et al.  An Overview of Nonlinear Model Predictive Control Applications , 2000 .

[36]  Andreas Zell,et al.  Fast and Accurate Environment Modelling using Omnidirectional Vision , 2004 .

[37]  Wolfgang Dahmen,et al.  Introduction to Model Based Optimization of Chemical Processes on Moving Horizons , 2001 .

[38]  J. Doyle,et al.  NONLINEAR OPTIMAL CONTROL: A CONTROL LYAPUNOV FUNCTION AND RECEDING HORIZON PERSPECTIVE , 1999 .

[39]  Xiang Li,et al.  Nonlinear predictive control of an omnidirectional robot dribbling a rolling ball , 2008, 2008 IEEE International Conference on Robotics and Automation.

[40]  Hong Chen,et al.  Nonlinear Model Predictive Control Schemes with Guaranteed Stability , 1998 .

[41]  Tucker R. Balch,et al.  Behavior-based control of a non-holonomic robot in pushing tasks , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[42]  C. P. Neuman,et al.  Kinematic Modeling for Feedback Control of an Omnidirectional Wheeled Mobile Robot , 1990, Autonomous Robot Vehicles.

[43]  Antonio M. Pascoal,et al.  Adaptive, non-singular path-following control of dynamic wheeled robots , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[44]  Farzad Pourboghrat,et al.  Adaptive control of dynamic mobile robots with nonholonomic constraints , 2002, Comput. Electr. Eng..

[45]  Frank L. Lewis,et al.  Autonomous Mobile Robots : Sensing, Control, Decision Making and Applications , 2006 .

[46]  Karim Ait-Abderrahim,et al.  Mobile robot control. Part 1 : Feedback control of nonholonomic wheeled cart in cartesian space , 1990 .

[47]  I. Neĭmark,et al.  Dynamics of Nonholonomic Systems , 1972 .

[48]  Martin Lauer,et al.  Making a Robot Learn to Play Soccer Using Reward and Punishment , 2007, KI.

[49]  D. Mayne,et al.  Receding horizon control of nonlinear systems , 1990 .

[50]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[51]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[52]  Giovanni Indiveri,et al.  Motion Control of Swedish Wheeled Mobile Robots in the Presence of Actuator Saturation , 2006, RoboCup.

[53]  Stefan Jakubek,et al.  Mobile robot predictive trajectory tracking , 2005, ICINCO.

[54]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[55]  Peter Spellucci,et al.  A new technique for inconsistent QP problems in the SQP method , 1998, Math. Methods Oper. Res..

[56]  Fernando Díaz del Río,et al.  A generalization of path following for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[57]  John Doyle,et al.  A receding horizon generalization of pointwise min-norm controllers , 2000, IEEE Trans. Autom. Control..

[58]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[59]  James B. Rawlings,et al.  Constrained linear quadratic regulation , 1998, IEEE Trans. Autom. Control..

[60]  D. Mayne,et al.  Receding horizon control of nonlinear systems without differentiability of the optimal value function , 1991 .

[61]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[62]  Christine Zarges,et al.  Cooperative Visual Tracking in a Team of Autonomous Mobile Robots , 2006, RoboCup.

[63]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[64]  Javier Ruiz-del-Solar,et al.  Motion Detection and Tracking for an AIBO Robot Using Camera Motion Compensation and Kalman Filtering , 2004, RoboCup.

[65]  Claude Samson,et al.  Time-varying Feedback Stabilization of Car-like Wheeled Mobile Robots , 1993, Int. J. Robotics Res..

[66]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[67]  A. Jadbabaie,et al.  Stabilizing receding horizon control of nonlinear systems: a control Lyapunov function approach , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[68]  Spyros G. Tzafestas Advances in Intelligent Autonomous Systems , 1999 .

[69]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[70]  Robert Sutton,et al.  Advances in Unmanned Marine Vehicles , 2006 .

[71]  Pedro U. Lima,et al.  A Modified Potential Fields Method for Robot Navigation Applied to Dribbling in Robotic Soccer , 2002, RoboCup.

[72]  Johan Potgieter,et al.  Improved Mecanum Wheel Design for Omni-directional Robots , 2002 .

[73]  Ole Ravn,et al.  Receding horizon approach to path following mobile robot in the presence of velocity constraints , 2001, 2001 European Control Conference (ECC).

[74]  B. Kim,et al.  Model predictive control of an autonomous vehicle , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).

[75]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[76]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[77]  John Hauser,et al.  On the stability of receding horizon control with a general terminal cost , 2005, IEEE Transactions on Automatic Control.

[78]  Raffaello D'Andrea,et al.  Trajectory generation and control for four wheeled omnidirectional vehicles , 2006, Robotics Auton. Syst..

[79]  Bas Terwijn,et al.  Algorithmic Foundation of the Clockwork Orange Robot Soccer Team , 2004, WAFR.

[80]  Martin A. Riedmiller,et al.  Using Machine Learning Techniques in Complex Multi-Agent Domains , 2003 .

[81]  Kazuaki Masuda,et al.  Mobile robots path planning method with the existence of moving obstacles , 2005, 2005 IEEE Conference on Emerging Technologies and Factory Automation.

[82]  Dieter Fox,et al.  Map-Based Multiple Model Tracking of a Moving Object , 2004, RoboCup.